Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143635 by SOMEDAVONG last updated on 16/Jun/21

Answered by TheHoneyCat last updated on 16/Jun/21

let x∈C _(or R if you want)   let s=sin(x) and c=cos(x)    s^4 +c^4 +s^2 c^2   =(s^2 )^2 +(c^2 )^2 +2(s^2 )(c^2 )−(sc)^2   =(s^2 +c^2 )−(sc)^2   =1−(sc)^2     also,  c^8 +s^8   =c^2 c^6 +s^2 s^6   =(1−s^2 )c^6 +(1−c^2 )s^6   =c^6 +s^6 −s^2 c^6 −c^2 s^6   =(1−s^2 )c^4 +(1−c^2 )s^4 −c^2 s^2 (c^4 +s^4 )  =c^4 +s^4 −s^2 c^4 −c^2 s^4 −c^2 s^2 (c^4 +s^4 )  =(c^4 +s^4 )(1−(cs)^2 )−(cs)^2 (c^2 +s^2 )  =( (1−s^2 )c^2  + (1−c^2 )s^2  )(1−(cs)^2 ) − (cs)^2   =( c^2 +s^2  −2(cs)^2  )(1−(cs)^2 ) − (cs)^2   =(1−2(cs)^2 )(1−(cs)^2 )−(cs)^2   =1−4(cs)^2 +2(cs)^4     therefore:  N=2−2(sc)^2 −1+4(sc)^2 −2(cs)^4   =1+2(sc)^2 −2(sc)^4     knowing that sin.cos(x)=(1/2)sin^2 (2x)  N=1+(1/2)sin^2 (2x)−(1/8)sin^4 (2x)( ✠)  =1+(1/2)sin^2 (2x)−(1/8)(1−cos^2 (2x))sin^2 (2x)  =(1/8)(8+4sin^2 −sin^2 +(cos.sin)^2 )(2x)  =(1/8)(8+3sin^2 (2x)+((1/2)sin(4x))^2 )  =(1/(64))(64+24sin^2 (2x)+2sin^2 (4x))  =(1/(64))(64+12+1 −12(1−sin^2 (2x)) −(1−2sin^2 (4x)))  =(1/(64))(77−12cos(4x)−cos(8x))    Wich is the ′′simpliest′′ expression _((it is its Fourrier transformation))   thougth I do prefer (✠)

letxCorRifyouwantlets=sin(x)andc=cos(x)s4+c4+s2c2=(s2)2+(c2)2+2(s2)(c2)(sc)2=(s2+c2)(sc)2=1(sc)2also,c8+s8=c2c6+s2s6=(1s2)c6+(1c2)s6=c6+s6s2c6c2s6=(1s2)c4+(1c2)s4c2s2(c4+s4)=c4+s4s2c4c2s4c2s2(c4+s4)=(c4+s4)(1(cs)2)(cs)2(c2+s2)=((1s2)c2+(1c2)s2)(1(cs)2)(cs)2=(c2+s22(cs)2)(1(cs)2)(cs)2=(12(cs)2)(1(cs)2)(cs)2=14(cs)2+2(cs)4therefore:N=22(sc)21+4(sc)22(cs)4=1+2(sc)22(sc)4knowingthatsin.cos(x)=12sin2(2x)N=1+12sin2(2x)18sin4(2x)()=1+12sin2(2x)18(1cos2(2x))sin2(2x)=18(8+4sin2sin2+(cos.sin)2)(2x)=18(8+3sin2(2x)+(12sin(4x))2)=164(64+24sin2(2x)+2sin2(4x))=164(64+12+112(1sin2(2x))(12sin2(4x)))=164(7712cos(4x)cos(8x))Wichisthesimpliestexpression(itisitsFourriertransformation)thougthIdoprefer()

Terms of Service

Privacy Policy

Contact: info@tinkutara.com