Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 143740 by Willson last updated on 17/Jun/21

Prove that  lim_(n→+∞) 2n−(2n+1)ln(n)+Σ_(p=0) ^n ln(1+p^2 )= ln(e^π −e^(−π) )

$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}2n}−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{n}\right)+\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\mathrm{p}^{\mathrm{2}} \right)=\:\mathrm{ln}\left({e}^{\pi} −{e}^{−\pi} \right) \\ $$

Answered by TheHoneyCat last updated on 17/Jun/21

I found a relatively short proof.  But it uses two famous results for which the proof is sgnificantly longer  you will find the proof for each on wikipedia (names in blue)    (1) n! ∼(√(2πn))((n/e))^n stirling′s approximation  (2) Π_(p=1) ^(+∞) (1+(1/p^2 ))=((shπ)/π) infinite products sh𝛑/𝛑    exp(2n−(2n+1)lnn+Σ_(p=1) ^n ln(1+p^2 ))  ∼exp(2n)exp(−(2n+1)lnn)Π_(p=1) ^n (1+p^2 )  ∼e^(2n) n^(−(2n+1)) Π_(p=1) ^n p^2 (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) Π_(p=1) ^n p^2 .Π_(p=1) ^n (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) (n!)^2 Π_(p=1) ^n (1+(1/p^2 ))  ∼e^(2n) n^(−(2n+1)) 2πn((n/e))^(2n) Π_(p=1) ^n (1+(1/p^2 )) using (1)  ∼n^(−(2n+1)) 2πnn^(2n) Π_(p=1) ^n (1+(1/p^2 ))   ∼2πΠ_(p=1) ^n (1+(1/p^2 ))   →_(n→∞) 2π((shπ)/π)=e^π −e^(−π)     thus:  lim_(n→+∞) 2n−(2n+1)ln(n)+Σ_(p=0) ^n ln(1+p^2 )= ln(e^π −e^(−π) )_■

$$\mathrm{I}\:\mathrm{found}\:\mathrm{a}\:\mathrm{relatively}\:\mathrm{short}\:\mathrm{proof}. \\ $$$$\mathrm{But}\:\mathrm{it}\:\mathrm{uses}\:\mathrm{two}\:{famous}\:\mathrm{results}\:\mathrm{for}\:\mathrm{which}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{is}\:\mathrm{sgnificantly}\:\mathrm{longer} \\ $$$$\mathrm{you}\:\mathrm{will}\:\mathrm{find}\:\mathrm{the}\:\mathrm{proof}\:\mathrm{for}\:\mathrm{each}\:\mathrm{on}\:\mathrm{wikipedia}\:\left({names}\:{in}\:{blue}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{n}!\:\sim\sqrt{\mathrm{2}\pi{n}}\left(\frac{{n}}{{e}}\right)^{{n}} {stirling}'{s}\:{approximation} \\ $$$$\left(\mathrm{2}\right)\:\underset{{p}=\mathrm{1}} {\overset{+\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)=\frac{\mathrm{sh}\pi}{\pi}\:{infinite}\:{products}\:{sh}\boldsymbol{\pi}/\boldsymbol{\pi} \\ $$$$ \\ $$$$\mathrm{exp}\left(\mathrm{2}{n}−\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{ln}{n}+\underset{{p}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+{p}^{\mathrm{2}} \right)\right) \\ $$$$\sim\mathrm{exp}\left(\mathrm{2}{n}\right)\mathrm{exp}\left(−\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{ln}{n}\right)\underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+{p}^{\mathrm{2}} \right) \\ $$$$\sim{e}^{\mathrm{2}{n}} {n}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}{p}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right) \\ $$$$\sim{e}^{\mathrm{2}{n}} {n}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}{p}^{\mathrm{2}} .\underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right) \\ $$$$\sim{e}^{\mathrm{2}{n}} {n}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \left({n}!\right)^{\mathrm{2}} \underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right) \\ $$$$\sim{e}^{\mathrm{2}{n}} {n}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \mathrm{2}\pi{n}\left(\frac{{n}}{{e}}\right)^{\mathrm{2}{n}} \underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)\:{using}\:\left(\mathrm{1}\right) \\ $$$$\sim{n}^{−\left(\mathrm{2}{n}+\mathrm{1}\right)} \mathrm{2}\pi{nn}^{\mathrm{2}{n}} \underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)\: \\ $$$$\sim\mathrm{2}\pi\underset{{p}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\right)\: \\ $$$$\underset{{n}\rightarrow\infty} {\rightarrow}\mathrm{2}\pi\frac{\mathrm{sh}\pi}{\pi}={e}^{\pi} −{e}^{−\pi} \\ $$$$ \\ $$$$\mathrm{thus}: \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}2n}−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{n}\right)+\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\mathrm{p}^{\mathrm{2}} \right)=\:\mathrm{ln}\left({e}^{\pi} −{e}^{−\pi} \right)_{\blacksquare} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com