Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 143769 by bemath last updated on 18/Jun/21

Answered by TheHoneyCat last updated on 18/Jun/21

(1/2)+(1/6)+(1/(12))+(1/(20))+(1/(9900))=((7921)/(990))≈0.8001010101    IF ′′+...+′′, in your question, is a finite sum of positive real numbers: (1)  (9/(100))=0.09<0.8 ⇒ (A) is false  ((19)/(100))=0.19<0.8 ⇒ (C) is false  ((99)/(200))=0.495<0.8 ⇒ (D) is false  ((99)/(1000))=>0.099<0.8 ⇒ (E) is false    IF the right result is necessarly among {(A),(B),(C),(D),(E)} (2)  well the answere is (B)    however I don′t see why these two hypothesis are true.  usualy ′′+...+′′ refers to an obvious sequence  like, for instance, (1/2)+(1/6)+(1/(24))+... is  (1/(n!))  and (1/2)+(1/6)+(1/(30))+(1/(210))+...=(1/(Π_(k=1) ^n p_n )) where p_n  is the n^(th)  prime number    in this case, I don′t know what +...+ refers too.  so obviously my proof is a bit lame

$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{20}}+\frac{\mathrm{1}}{\mathrm{9900}}=\frac{\mathrm{7921}}{\mathrm{990}}\approx\mathrm{0}.\mathrm{8001010101} \\ $$$$ \\ $$$$\mathrm{IF}\:''+...+'',\:\mathrm{in}\:\mathrm{your}\:\mathrm{question},\:\mathrm{is}\:\mathrm{a}\:\mathrm{finite}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}:\:\left(\mathrm{1}\right) \\ $$$$\frac{\mathrm{9}}{\mathrm{100}}=\mathrm{0}.\mathrm{09}<\mathrm{0}.\mathrm{8}\:\Rightarrow\:\left(\mathrm{A}\right)\:\mathrm{is}\:\mathrm{false} \\ $$$$\frac{\mathrm{19}}{\mathrm{100}}=\mathrm{0}.\mathrm{19}<\mathrm{0}.\mathrm{8}\:\Rightarrow\:\left(\mathrm{C}\right)\:\mathrm{is}\:\mathrm{false} \\ $$$$\frac{\mathrm{99}}{\mathrm{200}}=\mathrm{0}.\mathrm{495}<\mathrm{0}.\mathrm{8}\:\Rightarrow\:\left(\mathrm{D}\right)\:\mathrm{is}\:\mathrm{false} \\ $$$$\frac{\mathrm{99}}{\mathrm{1000}}=>\mathrm{0}.\mathrm{099}<\mathrm{0}.\mathrm{8}\:\Rightarrow\:\left(\mathrm{E}\right)\:\mathrm{is}\:\mathrm{false} \\ $$$$ \\ $$$$\mathrm{IF}\:\mathrm{the}\:\mathrm{right}\:\mathrm{result}\:\mathrm{is}\:\mathrm{necessarly}\:\mathrm{among}\:\left\{\left(\mathrm{A}\right),\left(\mathrm{B}\right),\left(\mathrm{C}\right),\left(\mathrm{D}\right),\left(\mathrm{E}\right)\right\}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{well}\:\mathrm{the}\:\mathrm{answere}\:\mathrm{is}\:\left(\mathrm{B}\right) \\ $$$$ \\ $$$${however}\:{I}\:{don}'{t}\:{see}\:{why}\:{these}\:{two}\:{hypothesis}\:{are}\:{true}. \\ $$$${usualy}\:''+...+''\:{refers}\:{to}\:{an}\:{obvious}\:{sequence} \\ $$$${like},\:{for}\:{instance},\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{24}}+...\:{is}\:\:\frac{\mathrm{1}}{{n}!} \\ $$$${and}\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{30}}+\frac{\mathrm{1}}{\mathrm{210}}+...=\frac{\mathrm{1}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{p}_{{n}} }\:{where}\:{p}_{{n}} \:{is}\:{the}\:{n}^{{th}} \:{prime}\:{number} \\ $$$$ \\ $$$${in}\:{this}\:{case},\:{I}\:{don}'{t}\:{know}\:{what}\:+...+\:{refers}\:{too}. \\ $$$${so}\:{obviously}\:{my}\:{proof}\:{is}\:{a}\:{bit}\:{lame} \\ $$

Answered by Dwaipayan Shikari last updated on 18/Jun/21

(1/2)+(1/6)+(1/(12))+(1/(20))+..+(1/(9900))  =1−(1/2)+(1/2)−(1/3)+(1/3)−(1/4)+..(1/(99))−(1/(100))  =1−(1/(100))=((99)/(100))

$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{20}}+..+\frac{\mathrm{1}}{\mathrm{9900}} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+..\frac{\mathrm{1}}{\mathrm{99}}−\frac{\mathrm{1}}{\mathrm{100}} \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{100}}=\frac{\mathrm{99}}{\mathrm{100}} \\ $$

Commented by Dwaipayan Shikari last updated on 18/Jun/21

Genreal Case for approximating  Σ_(k=1) ^n (1/k)≈γ+log(n)

$${Genreal}\:{Case}\:{for}\:{approximating} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\approx\gamma+{log}\left({n}\right) \\ $$

Answered by MJS_new last updated on 18/Jun/21

(1/2)+(1/(2+4))+(1/(2+4+6))+(1/(2+4+6+8))+...  =Σ_(k=1) ^n  (1/(k^2 +k)) =(n/(n+1))  in this case n=99 ⇒ answer is ((99)/(100))

$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{4}+\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{2}+\mathrm{4}+\mathrm{6}+\mathrm{8}}+... \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{k}}\:=\frac{{n}}{{n}+\mathrm{1}} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:{n}=\mathrm{99}\:\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{99}}{\mathrm{100}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com