Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 143774 by TheHoneyCat last updated on 18/Jun/21

Is this statement true or not?  ∃ A∈M_3 (R) ∣ tr(A)=0 and A^2 +^t A=I_3

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{statement}\:{true}\:\mathrm{or}\:\mathrm{not}? \\ $$$$\exists\:\mathrm{A}\in\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)\:\mid\:\mathrm{tr}\left(\mathrm{A}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{A}^{\mathrm{2}} +^{{t}} \mathrm{A}=\mathrm{I}_{\mathrm{3}} \\ $$

Commented by TheHoneyCat last updated on 18/Jun/21

Oh, I actually found the answer. �� sorry. Should I send it?

Commented by ArielVyny last updated on 18/Jun/21

yes

$${yes} \\ $$

Answered by TheHoneyCat last updated on 19/Jun/21

let A be a matrix such that: A^2 +^t A=I_3   −^t A=A^2 −I_3   so −A=^t A^2 −I_3   thus −A=(A^2 −I_3 )−I_3   ⇔0_(M_3 (R)) =A^2 −2A+I_3 −I_3 +A  ⇔0_(M_3 (R)) =A^2 −A  in a word: the polynomial (X−1)X  cancels  therefore, let μ_A be the minimal polynomial of A   μ_A ∈{X, X−1, (X−1)X}  μ_A =X ⇒ A=0_(M_3 (R))  but 0^2 +^t 0≠I_3   μ_A =X−1 ⇒ A=I_3  ⇒ tr(A)=3≠0  μ_A =(X−1)X⇒ A is diagonalizable with 1 and 0 as eigenvalues  ⇒∃G∈Gl_3 (R) ∣ GAG^(−1) ∈{ ((1,0,0),(0,1,0),(0,0,0) ),  ((1,0,0),(0,0,0),(0,0,0) )}  ⇒tr(A)∈{2,1}  ⇒tr(A)≠0      So the answere is no, there are no such matrices

$$\mathrm{let}\:\mathrm{A}\:\mathrm{be}\:\mathrm{a}\:\mathrm{matrix}\:\mathrm{such}\:\mathrm{that}:\:\mathrm{A}^{\mathrm{2}} +^{{t}} \mathrm{A}=\mathrm{I}_{\mathrm{3}} \\ $$$$−\:^{{t}} \mathrm{A}=\mathrm{A}^{\mathrm{2}} −\mathrm{I}_{\mathrm{3}} \\ $$$$\mathrm{so}\:−\mathrm{A}=^{{t}} \mathrm{A}^{\mathrm{2}} −\mathrm{I}_{\mathrm{3}} \\ $$$$\mathrm{thus}\:−\mathrm{A}=\left(\mathrm{A}^{\mathrm{2}} −\mathrm{I}_{\mathrm{3}} \right)−\mathrm{I}_{\mathrm{3}} \\ $$$$\Leftrightarrow\mathrm{0}_{\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)} =\mathrm{A}^{\mathrm{2}} −\mathrm{2A}+\mathrm{I}_{\mathrm{3}} −\mathrm{I}_{\mathrm{3}} +\mathrm{A} \\ $$$$\Leftrightarrow\mathrm{0}_{\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)} =\mathrm{A}^{\mathrm{2}} −\mathrm{A} \\ $$$$\mathrm{in}\:\mathrm{a}\:\mathrm{word}:\:\mathrm{the}\:\mathrm{polynomial}\:\left({X}−\mathrm{1}\right){X}\:\:\mathrm{cancels} \\ $$$$\mathrm{therefore},\:\mathrm{let}\:\mu_{{A}} \mathrm{be}\:\mathrm{the}\:{minimal}\:{polynomial}\:\mathrm{of}\:\mathrm{A}\: \\ $$$$\mu_{{A}} \in\left\{{X},\:{X}−\mathrm{1},\:\left({X}−\mathrm{1}\right){X}\right\} \\ $$$$\mu_{{A}} ={X}\:\Rightarrow\:\mathrm{A}=\mathrm{0}_{\mathscr{M}_{\mathrm{3}} \left(\mathbb{R}\right)} \:\mathrm{but}\:\mathrm{0}^{\mathrm{2}} +^{{t}} \mathrm{0}\neq\mathrm{I}_{\mathrm{3}} \\ $$$$\mu_{{A}} ={X}−\mathrm{1}\:\Rightarrow\:\mathrm{A}=\mathrm{I}_{\mathrm{3}} \:\Rightarrow\:\mathrm{tr}\left(\mathrm{A}\right)=\mathrm{3}\neq\mathrm{0} \\ $$$$\mu_{{A}} =\left({X}−\mathrm{1}\right){X}\Rightarrow\:\mathrm{A}\:\mathrm{is}\:{diagonalizable}\:\mathrm{with}\:\mathrm{1}\:\mathrm{and}\:\mathrm{0}\:\mathrm{as}\:{eigenvalues} \\ $$$$\Rightarrow\exists{G}\in\mathscr{G}{l}_{\mathrm{3}} \left(\mathbb{R}\right)\:\mid\:{G}\mathrm{A}{G}^{−\mathrm{1}} \in\left\{\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{pmatrix},\:\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{pmatrix}\right\} \\ $$$$\Rightarrow\mathrm{tr}\left(\mathrm{A}\right)\in\left\{\mathrm{2},\mathrm{1}\right\} \\ $$$$\Rightarrow\mathrm{tr}\left(\mathrm{A}\right)\neq\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{So}\:\mathrm{the}\:\mathrm{answere}\:\mathrm{is}\:{no},\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{such}\:\mathrm{matrices} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com