Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 14384 by ajfour last updated on 31/May/17

Commented by ajfour last updated on 31/May/17

only find S=x+y+z  in terms of a, b , c  which are  sides of △ABC.

$${only}\:{find}\:{S}={x}+{y}+{z} \\ $$$${in}\:{terms}\:{of}\:\boldsymbol{{a}},\:\boldsymbol{{b}}\:,\:\boldsymbol{{c}}\:\:{which}\:{are} \\ $$$${sides}\:{of}\:\bigtriangleup{ABC}. \\ $$

Commented by RasheedSindhi last updated on 31/May/17

This Question is closely related  to Q#14157.  Same equations exist here!

$$\mathrm{This}\:\mathrm{Question}\:\mathrm{is}\:\mathrm{closely}\:\mathrm{related} \\ $$$$\mathrm{to}\:\mathrm{Q}#\mathrm{14157}. \\ $$$$\mathrm{Same}\:\mathrm{equations}\:\mathrm{exist}\:\mathrm{here}! \\ $$

Commented by ajfour last updated on 31/May/17

yes, i am searching for rather  simple expeessions of x,y, and  z in terms of a, b, and c .  outermost  boundary of figure  is a hexagon of side lengths  a,b,c,a,b,c   and in the same  order.

$${yes},\:{i}\:{am}\:{searching}\:{for}\:{rather} \\ $$$${simple}\:{expeessions}\:{of}\:{x},{y},\:{and} \\ $$$${z}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:{and}\:\boldsymbol{{c}}\:. \\ $$$${outermost}\:\:{boundary}\:{of}\:{figure} \\ $$$${is}\:{a}\:{hexagon}\:{of}\:{side}\:{lengths} \\ $$$$\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}},\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:\:\:{and}\:{in}\:{the}\:{same} \\ $$$${order}. \\ $$

Commented by RasheedSindhi last updated on 31/May/17

∠CA′B=120°  According to cosine law  a^2 =x^2 +y^2 −2xy cos ∠CA′B  a^2 =x^2 +y^2 −2xy cos 120  a^2 =x^2 +y^2 −2xy(−1/2)  a^2 =x^2 +y^2 +xy  In a similar manner the remaining  two equtions can be obtained.

$$\angle\mathrm{CA}'\mathrm{B}=\mathrm{120}° \\ $$$$\mathrm{According}\:\mathrm{to}\:\mathrm{cosine}\:\mathrm{law} \\ $$$$\mathrm{a}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2xy}\:\mathrm{cos}\:\angle\mathrm{CA}'\mathrm{B} \\ $$$$\mathrm{a}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2xy}\:\mathrm{cos}\:\mathrm{120} \\ $$$$\mathrm{a}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2xy}\left(−\mathrm{1}/\mathrm{2}\right) \\ $$$$\mathrm{a}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{xy} \\ $$$$\mathrm{In}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{manner}\:\mathrm{the}\:\mathrm{remaining} \\ $$$$\mathrm{two}\:\mathrm{equtions}\:\mathrm{can}\:\mathrm{be}\:\mathrm{obtained}. \\ $$

Commented by mrW1 last updated on 31/May/17

very interesting try!  geometric solutions are the most  beautiful solutions, because you  can see and feel them.

$${very}\:{interesting}\:{try}! \\ $$$${geometric}\:{solutions}\:{are}\:{the}\:{most} \\ $$$${beautiful}\:{solutions},\:{because}\:{you} \\ $$$${can}\:{see}\:{and}\:{feel}\:{them}. \\ $$

Commented by RasheedSindhi last updated on 31/May/17

Nice Say Sir!

$$\mathcal{N}{ice}\:{Say}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com