Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143920 by mohammad17 last updated on 19/Jun/21

Answered by Dwaipayan Shikari last updated on 19/Jun/21

a^2 u=Ce^(±ax+t)

$${a}^{\mathrm{2}} {u}={Ce}^{\pm{ax}+{t}} \\ $$

Commented by mohammad17 last updated on 19/Jun/21

can you give stebs sir

$${can}\:{you}\:{give}\:{stebs}\:{sir} \\ $$

Commented by Dwaipayan Shikari last updated on 19/Jun/21

I don′t know any systematic way to solve  P.D.E . But i observed that   One can check (∂u/∂t)=Ce^(±ax+t)    and (∂^2 u/∂x^2 )=(±a)^2 Ce^(±ax+t)   ⇒(∂^2 u/∂x^2 )=a^2 (∂u/∂t)

$${I}\:{don}'{t}\:{know}\:{any}\:{systematic}\:{way}\:{to}\:{solve} \\ $$$${P}.{D}.{E}\:.\:{But}\:{i}\:{observed}\:{that}\: \\ $$$${One}\:{can}\:{check}\:\frac{\partial{u}}{\partial{t}}={Ce}^{\pm{ax}+{t}} \:\:\:{and}\:\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }=\left(\pm{a}\right)^{\mathrm{2}} {Ce}^{\pm{ax}+{t}} \\ $$$$\Rightarrow\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }={a}^{\mathrm{2}} \frac{\partial{u}}{\partial{t}} \\ $$

Answered by Olaf_Thorendsen last updated on 19/Jun/21

(∂u/∂t) = a^2 (∂^2 u/∂x^2 )     (1)  Usually, we try to find such a solution  u(x,t) = A(x)B(t)  (1) : A(x)B′(t) = a^2 A′′(x)B(t)  a^2 ((A′′(x))/(A(x))) = ((B′(t))/(B(t)))     (2)  Necessarily (2) = constant  (2) : ((B′(t))/(B(t)))  = cst = −α^2   B(t)  = B_0 e^(−α^2 t)      (3)  (2) : a^2 ((A′′(x))/(A(x))) = cst = −α^2   A(x) = λcos(((αx)/a))+μsin(((αx)/a))     (4)    Limit conditions :    u(0,t) = 0 = λB_0 e^(−α^2 t)   ⇒ λ = 0  u(x,t) = μsin(((αx)/a))B_0 e^(−α^2 t)  = U_0 sin(((αx)/a))e^(−α^2 t)     u(l,t) = 0 = U_0 sin(((αl)/a))e^(−α^2 t)   ⇒ ((αl)/a) = π  u(x,t) = U_0 sin(((πx)/l))e^(−((π^2 a^2 )/l^2 )t)     u(x,0) = 3sin(((πx)/l)) = U_0 sin(((πx)/l))e^0   ⇒ U_0  = 3    Finally u(x,t) = 3sin(((πx)/l))e^(−((π^2 a^2 t)/l^2 ))

$$\frac{\partial{u}}{\partial{t}}\:=\:{a}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{Usually},\:\mathrm{we}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{such}\:\mathrm{a}\:\mathrm{solution} \\ $$$${u}\left({x},{t}\right)\:=\:\mathrm{A}\left({x}\right)\mathrm{B}\left({t}\right) \\ $$$$\left(\mathrm{1}\right)\::\:\mathrm{A}\left({x}\right)\mathrm{B}'\left({t}\right)\:=\:{a}^{\mathrm{2}} \mathrm{A}''\left({x}\right)\mathrm{B}\left({t}\right) \\ $$$${a}^{\mathrm{2}} \frac{\mathrm{A}''\left({x}\right)}{\mathrm{A}\left({x}\right)}\:=\:\frac{\mathrm{B}'\left({t}\right)}{\mathrm{B}\left({t}\right)}\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\mathrm{Necessarily}\:\left(\mathrm{2}\right)\:=\:\mathrm{constant} \\ $$$$\left(\mathrm{2}\right)\::\:\frac{\mathrm{B}'\left({t}\right)}{\mathrm{B}\left({t}\right)}\:\:=\:\mathrm{cst}\:=\:−\alpha^{\mathrm{2}} \\ $$$$\mathrm{B}\left({t}\right)\:\:=\:\mathrm{B}_{\mathrm{0}} {e}^{−\alpha^{\mathrm{2}} {t}} \:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\left(\mathrm{2}\right)\::\:{a}^{\mathrm{2}} \frac{\mathrm{A}''\left({x}\right)}{\mathrm{A}\left({x}\right)}\:=\:\mathrm{cst}\:=\:−\alpha^{\mathrm{2}} \\ $$$$\mathrm{A}\left({x}\right)\:=\:\lambda\mathrm{cos}\left(\frac{\alpha{x}}{{a}}\right)+\mu\mathrm{sin}\left(\frac{\alpha{x}}{{a}}\right)\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$$ \\ $$$$\mathrm{Limit}\:\mathrm{conditions}\:: \\ $$$$ \\ $$$${u}\left(\mathrm{0},{t}\right)\:=\:\mathrm{0}\:=\:\lambda\mathrm{B}_{\mathrm{0}} {e}^{−\alpha^{\mathrm{2}} {t}} \\ $$$$\Rightarrow\:\lambda\:=\:\mathrm{0} \\ $$$${u}\left({x},{t}\right)\:=\:\mu\mathrm{sin}\left(\frac{\alpha{x}}{{a}}\right)\mathrm{B}_{\mathrm{0}} {e}^{−\alpha^{\mathrm{2}} {t}} \:=\:\mathrm{U}_{\mathrm{0}} \mathrm{sin}\left(\frac{\alpha{x}}{{a}}\right){e}^{−\alpha^{\mathrm{2}} {t}} \\ $$$$ \\ $$$${u}\left({l},{t}\right)\:=\:\mathrm{0}\:=\:\mathrm{U}_{\mathrm{0}} \mathrm{sin}\left(\frac{\alpha{l}}{{a}}\right){e}^{−\alpha^{\mathrm{2}} {t}} \\ $$$$\Rightarrow\:\frac{\alpha{l}}{{a}}\:=\:\pi \\ $$$${u}\left({x},{t}\right)\:=\:\mathrm{U}_{\mathrm{0}} \mathrm{sin}\left(\frac{\pi{x}}{{l}}\right){e}^{−\frac{\pi^{\mathrm{2}} {a}^{\mathrm{2}} }{{l}^{\mathrm{2}} }{t}} \\ $$$$ \\ $$$${u}\left({x},\mathrm{0}\right)\:=\:\mathrm{3sin}\left(\frac{\pi{x}}{{l}}\right)\:=\:\mathrm{U}_{\mathrm{0}} \mathrm{sin}\left(\frac{\pi{x}}{{l}}\right){e}^{\mathrm{0}} \\ $$$$\Rightarrow\:\mathrm{U}_{\mathrm{0}} \:=\:\mathrm{3} \\ $$$$ \\ $$$$\mathrm{Finally}\:{u}\left({x},{t}\right)\:=\:\mathrm{3sin}\left(\frac{\pi{x}}{{l}}\right){e}^{−\frac{\pi^{\mathrm{2}} {a}^{\mathrm{2}} {t}}{{l}^{\mathrm{2}} }} \\ $$

Commented by mohammad17 last updated on 20/Jun/21

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Dwaipayan Shikari last updated on 20/Jun/21

Thanks sir

$${Thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com