Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143964 by naka3546 last updated on 20/Jun/21

x_1  and  x_2   are  solutions  of  equality :    cos (((πx+π)/6)) − sin (((πx−π)/6)) = (1/2) (√3)   ,   0 ≤ x ≤ 12  Find  the  value  of  x_1 + x_2  .

x1andx2aresolutionsofequality:cos(πx+π6)sin(πxπ6)=123,0x12Findthevalueofx1+x2.

Commented by Canebulok last updated on 20/Jun/21

   Solution:  By squaring both sides,  ⇒ cos(((πx)/6) + (π/6))−sin(((πx)/(6 )) − (π/6)) = ((√3)/2)  ⇒ [cos(((πx)/6))cos((π/6))−sin(((πx)/6))sin((π/6))] − [sin(((πx)/6))cos((π/6))−cos(((πx)/6))sin((π/6))] = ((√3)/2)

Solution:Bysquaringbothsides,cos(πx6+π6)sin(πx6π6)=32[cos(πx6)cos(π6)sin(πx6)sin(π6)][sin(πx6)cos(π6)cos(πx6)sin(π6)]=32

Commented by Canebulok last updated on 20/Jun/21

Solution:  ⇒ [cos(((πx)/6))cos((π/6))−sin(((πx)/6))cos((π/6))] + [cos(((πx)/6))sin((π/6))−sin(((πx)/6))sin((π/6))] = ((√3)/2)  ⇒ cos((π/6))[cos(((πx)/6))−sin(((πx)/6))] + sin((π/6))[cos(((πx)/6))−sin(((πx)/6))] = ((√3)/2)  ⇒ [cos((π/6))+sin((π/6))][cos(((πx)/6))−sin(((πx)/6))] = ((√3)/2)     By squaring both sides,  ⇒ [1+2cos((π/6))sin((π/6))][1−2sin(((πx)/6))cos(((πx)/6))] = (3/4)  ⇒ [1+sin((π/3))][1−sin(((πx)/3))] = (3/4)  ⇒ 1−sin(((πx)/3)) = (3/(4[1+sin((π/3))]))     ⇒ −sin(((πx)/3)) = (3/((4+4sin((π/3))))) − 1     ⇒ sin(((πx)/3)) = 1 − (3/((4+4sin((π/3)))))  ⇒ arcsin[1−(3/((4+4sin((π/3)))))] = ((πx)/3)  ⇒ arcsin[1−(3/((4+4sin((π/3)))))] ((3/π)) = x     ∼ Kevin

Solution:[cos(πx6)cos(π6)sin(πx6)cos(π6)]+[cos(πx6)sin(π6)sin(πx6)sin(π6)]=32cos(π6)[cos(πx6)sin(πx6)]+sin(π6)[cos(πx6)sin(πx6)]=32[cos(π6)+sin(π6)][cos(πx6)sin(πx6)]=32Bysquaringbothsides,[1+2cos(π6)sin(π6)][12sin(πx6)cos(πx6)]=34[1+sin(π3)][1sin(πx3)]=341sin(πx3)=34[1+sin(π3)]sin(πx3)=3(4+4sin(π3))1sin(πx3)=13(4+4sin(π3))arcsin[13(4+4sin(π3))]=πx3arcsin[13(4+4sin(π3))](3π)=xKevin

Answered by bramlexs22 last updated on 20/Jun/21

sin (((πx−π)/6))=cos (((3π−πx+π)/6))=cos (((πx−4π)/6))  ⇔ cos (((πx+π)/6))−cos (((πx−4π)/6))=((√3)/2)  ⇔−2sin (((2πx−3π)/(12)))sin (((5π)/(12)))=((√3)/2)  ⇔

sin(πxπ6)=cos(3ππx+π6)=cos(πx4π6)cos(πx+π6)cos(πx4π6)=322sin(2πx3π12)sin(5π12)=32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com