Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144000 by bluberry508 last updated on 20/Jun/21

prove that     ∀_m ∈N , a_k ,b_k ∈R  cos^(2m) x =Σ_(k=1) ^m a_k cos 2kx  cos^(2m−1) x=Σ_(k=1) ^m b_k cos (2k−1)x    and  find expr  of  a_k  ,b_k  in terms of k.

$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$ \\ $$$$\forall_{{m}} \in\mathbb{N}\:,\:{a}_{{k}} ,{b}_{{k}} \in\mathbb{R} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}} {x}\:=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{k}} \mathrm{cos}\:\mathrm{2}{kx} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}−\mathrm{1}} {x}=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{b}_{{k}} \mathrm{cos}\:\left(\mathrm{2}{k}−\mathrm{1}\right){x} \\ $$$$ \\ $$$$\mathrm{and}\:\:\mathrm{find}\:\mathrm{expr}\:\:\mathrm{of}\:\:{a}_{{k}} \:,{b}_{{k}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{k}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 20/Jun/21

cos^(2m) x =(((e^(ix) +e^(−ix) )/2))^(2m)  =(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  (e^(ix) )^k (e^(−ix) )^(2m−k)   =(1/2^(2m) )Σ_(k=0) ^(2m)  e^(ikx) .e^(−i(2m−k)x)   =(1/2^(2m) )Σ_(k=0) ^(2m) C_(2m) ^k  e^(i(2k−2m)x) =(1/2^(2m) )Σ_(k=0) ^(2m) C_(2m) ^k  e^(2i(k−m)x)   =(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  cos2(k−m)x +(i/2^(2m) )Σ_(k0) ^(2m)  C_(2m) ^k  sin2(k−m)x  but cos^(2m) x is real ⇒cos^(2m) x=(1/2^(2m) )Σ_(k=0) ^(2m)  C_(2m) ^k  cos2(k−m)x  =_(k−m=j)    (1/2^(2m) )Σ_(j=−m) ^m  C_(2m) ^(m+j)  cos2jx  =(1/2^(2m) )Σ_(j=−m) ^(−1) C_(2m) ^(m+j) cos(2jx) +(C_(2m) ^m /2^(2m) ) +Σ_(j=1) ^m  C_(2m) ^(m+j)  cos(2jx)  =_(j=−k)     (1/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k) cos(2kx) +(C_(2m) ^m /2^(2m) ) +(1/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx)  =1+(2/2^(2m) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx) =(C_(2m) ^m /2^(2m) )+(1/2^(2m−1) )Σ_(k=1) ^m  C_(2m) ^(m−k)  cos(2kx)  ⇒a_k =Σ_(k=1) ^m  (C_(2m) ^(m−k) /2^(2m−1) )  for k≥1 and a_0 =(C_(2m) ^m /2^(2m) )  cos^(2m) x=a_0 +Σ_(k=1) ^m  a_k cos(2kx)

$$\mathrm{cos}^{\mathrm{2m}} \mathrm{x}\:=\left(\frac{\mathrm{e}^{\mathrm{ix}} +\mathrm{e}^{−\mathrm{ix}} }{\mathrm{2}}\right)^{\mathrm{2m}} \:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\left(\mathrm{e}^{\mathrm{ix}} \right)^{\mathrm{k}} \left(\mathrm{e}^{−\mathrm{ix}} \right)^{\mathrm{2m}−\mathrm{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \:\mathrm{e}^{\mathrm{ikx}} .\mathrm{e}^{−\mathrm{i}\left(\mathrm{2m}−\mathrm{k}\right)\mathrm{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{2k}−\mathrm{2m}\right)\mathrm{x}} =\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{2i}\left(\mathrm{k}−\mathrm{m}\right)\mathrm{x}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\mathrm{cos2}\left(\mathrm{k}−\mathrm{m}\right)\mathrm{x}\:+\frac{\mathrm{i}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k0}} ^{\mathrm{2m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\mathrm{sin2}\left(\mathrm{k}−\mathrm{m}\right)\mathrm{x} \\ $$$$\mathrm{but}\:\mathrm{cos}^{\mathrm{2m}} \mathrm{x}\:\mathrm{is}\:\mathrm{real}\:\Rightarrow\mathrm{cos}^{\mathrm{2m}} \mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{k}} \:\mathrm{cos2}\left(\mathrm{k}−\mathrm{m}\right)\mathrm{x} \\ $$$$=_{\mathrm{k}−\mathrm{m}=\mathrm{j}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{j}=−\mathrm{m}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}+\mathrm{j}} \:\mathrm{cos2jx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{j}=−\mathrm{m}} ^{−\mathrm{1}} \mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}+\mathrm{j}} \mathrm{cos}\left(\mathrm{2jx}\right)\:+\frac{\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}} }{\mathrm{2}^{\mathrm{2m}} }\:+\sum_{\mathrm{j}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}+\mathrm{j}} \:\mathrm{cos}\left(\mathrm{2jx}\right) \\ $$$$=_{\mathrm{j}=−\mathrm{k}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}−\mathrm{k}} \mathrm{cos}\left(\mathrm{2kx}\right)\:+\frac{\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}} }{\mathrm{2}^{\mathrm{2m}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}−\mathrm{k}} \:\mathrm{cos}\left(\mathrm{2kx}\right) \\ $$$$=\mathrm{1}+\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2m}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}−\mathrm{k}} \:\mathrm{cos}\left(\mathrm{2kx}\right)\:=\frac{\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}} }{\mathrm{2}^{\mathrm{2m}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2m}−\mathrm{1}} }\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}−\mathrm{k}} \:\mathrm{cos}\left(\mathrm{2kx}\right) \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{k}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\frac{\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}−\mathrm{k}} }{\mathrm{2}^{\mathrm{2m}−\mathrm{1}} }\:\:\mathrm{for}\:\mathrm{k}\geqslant\mathrm{1}\:\mathrm{and}\:\mathrm{a}_{\mathrm{0}} =\frac{\mathrm{C}_{\mathrm{2m}} ^{\mathrm{m}} }{\mathrm{2}^{\mathrm{2m}} } \\ $$$$\mathrm{cos}^{\mathrm{2m}} \mathrm{x}=\mathrm{a}_{\mathrm{0}} +\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{m}} \:\mathrm{a}_{\mathrm{k}} \mathrm{cos}\left(\mathrm{2kx}\right) \\ $$

Commented by bluberry508 last updated on 20/Jun/21

wow...  I haven′t ever expected this view  thank you sir

$$\mathrm{wow}...\:\:\mathrm{I}\:\mathrm{haven}'\mathrm{t}\:\mathrm{ever}\:\mathrm{expected}\:\mathrm{this}\:\mathrm{view} \\ $$$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 20/Jun/21

Sorry i have marked your comment as inappropiate  by mistake .

$${Sorry}\:{i}\:{have}\:{marked}\:{your}\:{comment}\:{as}\:{inappropiate} \\ $$$${by}\:{mistake}\:.\: \\ $$

Commented by Rasheed.Sindhi last updated on 20/Jun/21

And I′ve cleared the red mark by  liking the post!

$${And}\:{I}'{ve}\:{cleared}\:{the}\:{red}\:{mark}\:{by} \\ $$$${liking}\:{the}\:{post}! \\ $$

Commented by Dwaipayan Shikari last updated on 20/Jun/21

Thanks sir

$${Thanks}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 20/Jun/21

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com