All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 144026 by mohammad17 last updated on 20/Jun/21
Commented by mohammad17 last updated on 20/Jun/21
helpmesir
Answered by Olaf_Thorendsen last updated on 20/Jun/21
Ω=∫0ln2e5x+2e4x+e2x+exe2x+ex+1dxLetu=exΩ=∫12u5+2u4+u2+uu2+u+1.duuΩ=∫12u4+2u3+u+1u2+u+1duΩ=∫12(u2+u−2)(u2+u+1)+(2u+1)+2u2+u+1duΩ=∫12(u2+u−2+2u+1u2+u+1+2u2+u+1)duΩ1=∫12(u2+u−2)duΩ1=[u33+u22−2u]12Ω1=(83+2−4)−(13+12−2)Ω1=46−(−76)=116Ω2=∫122u+1u2+u+1duΩ2=[ln∣u2+u+1∣]12Ω2=ln7−ln3=ln73Ω3=∫122u2+u+1duΩ3=∫122(u+12)2+34duΩ3=2[132arctan(u+1232)]12Ω3=43[arctan(23(u+12)]12Ω3=43(arctan(53)−arctan(33))Ω3=43arctan(53−331+53.33)Ω3=43arctan(236)Ω3=43arctan(133)Ω=Ω1+Ω2+Ω3Ω=116+ln73+43arctan(133)
Commented by BHOOPENDRA last updated on 20/Jun/21
Nicesolutionsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com