Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144026 by mohammad17 last updated on 20/Jun/21

Commented by mohammad17 last updated on 20/Jun/21

help me sir

helpmesir

Answered by Olaf_Thorendsen last updated on 20/Jun/21

Ω = ∫_0 ^(ln2) ((e^(5x) +2e^(4x) +e^(2x) +e^x )/(e^(2x) +e^x +1)) dx  Let u = e^x   Ω = ∫_1 ^2 ((u^5 +2u^4 +u^2 +u)/(u^2 +u+1)). (du/u)  Ω = ∫_1 ^2 ((u^4 +2u^3 +u+1)/(u^2 +u+1)) du  Ω = ∫_1 ^2 (((u^2 +u−2)(u^2 +u+1)+(2u+1)+2)/(u^2 +u+1)) du  Ω = ∫_1 ^2 (u^2 +u−2+((2u+1)/(u^2 +u+1))+(2/(u^2 +u+1))) du  Ω_1  = ∫_1 ^2 (u^2 +u−2) du  Ω_1  = [(u^3 /3)+(u^2 /2)−2u]_1 ^2   Ω_1  = ((8/3)+2−4)−((1/3)+(1/2)−2)  Ω_1  = (4/6)−(−(7/6)) = ((11)/6)  Ω_2  = ∫_1 ^2 ((2u+1)/(u^2 +u+1)) du  Ω_2  = [ln∣u^2 +u+1∣]_1 ^2   Ω_2  = ln7−ln3 = ln(7/3)    Ω_3  = ∫_1 ^2 (2/(u^2 +u+1)) du  Ω_3  = ∫_1 ^2 (2/((u+(1/2))^2 +(3/4))) du  Ω_3  = 2[(1/((√3)/2))arctan(((u+(1/2))/((√3)/2)))]_1 ^2   Ω_3  = (4/( (√3)))[arctan((2/( (√3)))(u+(1/2))]_1 ^2   Ω_3  = (4/( (√3)))(arctan((5/( (√3))))−arctan((3/( (√3)))))  Ω_3  = (4/( (√3)))arctan((((5/( (√3)))−(3/( (√3))))/(1+(5/( (√3))).(3/( (√3))))))  Ω_3  = (4/( (√3)))arctan(((2/( (√3)))/6))  Ω_3  = (4/( (√3)))arctan((1/(3(√3))))    Ω =Ω_1 +Ω_2 +Ω_3   Ω = ((11)/6)+ln(7/3)+(4/( (√3)))arctan((1/(3(√3))))

Ω=0ln2e5x+2e4x+e2x+exe2x+ex+1dxLetu=exΩ=12u5+2u4+u2+uu2+u+1.duuΩ=12u4+2u3+u+1u2+u+1duΩ=12(u2+u2)(u2+u+1)+(2u+1)+2u2+u+1duΩ=12(u2+u2+2u+1u2+u+1+2u2+u+1)duΩ1=12(u2+u2)duΩ1=[u33+u222u]12Ω1=(83+24)(13+122)Ω1=46(76)=116Ω2=122u+1u2+u+1duΩ2=[lnu2+u+1]12Ω2=ln7ln3=ln73Ω3=122u2+u+1duΩ3=122(u+12)2+34duΩ3=2[132arctan(u+1232)]12Ω3=43[arctan(23(u+12)]12Ω3=43(arctan(53)arctan(33))Ω3=43arctan(53331+53.33)Ω3=43arctan(236)Ω3=43arctan(133)Ω=Ω1+Ω2+Ω3Ω=116+ln73+43arctan(133)

Commented by BHOOPENDRA last updated on 20/Jun/21

Nice solution sir

Nicesolutionsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com