All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 144042 by maryxxxx last updated on 20/Jun/21
Answered by mindispower last updated on 20/Jun/21
∫dxx31−(10x)2y=100x2,y<1⇒dy=−200x3dx⇒−1200∫dy1−ydy=11001−y+c=1−100x2100+c
Answered by liberty last updated on 21/Jun/21
I=∫dxx31−100x−2letu=1−100x−2∧u2=1−100x−2⇒2udu=200x−3dx;dxx3=udu100I=∫1u(udu100)=u100+c=1−100x−2100+c=x−100100x+c
Answered by mathmax by abdo last updated on 21/Jun/21
Ψ=∫dxx2x2−100⇒Ψ=x=10cht∫10shtdt100ch2t×10sht=1100∫dtch2t=150∫dtch(2t)+1=2t=u150∫du2(chu+1)=1100∫dueu+e−u2+1=150∫dueu+e−u+2=eu=z150∫dzz(z+z−1+2)=150∫dzz2+2z+1=150∫dz(z+1)2=−150(z+1)+K=−150(eu+1)+K=−150(1+et2)+Kt=argch(x10)=log(x10+x2100−1)⇒Ψ=−150(1+e12log(x10+x2100−1)+K=−150(1+x10+x2100−1)+K(x>10)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com