Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144052 by physicstutes last updated on 21/Jun/21

Evaluate    ∫ ((√x)/(sinh x)) dx

Evaluatexsinhxdx

Answered by mindispower last updated on 21/Jun/21

x>0  =∫((2e^(−x) (√x)dx)/(1−e^(−2x) ))  =Σ_(k≥0) ∫2e^(−(1+2k)x) (√x)dx  =2Σ_(k≥0) (1/((1+2k)^(3/2) ))∫(√x)e^(−x) dx  recal Γ(a,x) incomplet Gamma function  Γ(a,x)=∫_x ^∞ t^(a−1) e^(−t) dt  ∫(√x)e^(−x) dx=∫x^((3/2)−1) e^(−x) dx=−Γ((3/2),x)+c  Σ_(m≥0) (1/((1+2k)^(3/2) ))=ζ((3/2))−((ζ((3/2)))/2^(3/2) )  we get,∫((√x)/(sh(x)))dx=−(1/( (√2)))(2(√2)−1)ζ((3/2))Γ((3/2),x)+c  c∈R

x>0=2exxdx1e2x=k02e(1+2k)xxdx=2k01(1+2k)32xexdxrecalΓ(a,x)incompletGammafunctionΓ(a,x)=xta1etdtxexdx=x321exdx=Γ(32,x)+cm01(1+2k)32=ζ(32)ζ(32)232weget,xsh(x)dx=12(221)ζ(32)Γ(32,x)+ccR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com