Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144053 by mnjuly1970 last updated on 21/Jun/21

                      ........ Calculus........         Ω:=lim(1/π)∫_0 ^( 2π) (Σ_(k=1) ^n ((sin(kx))/( (√2^k ))))^2 dx=?

........Calculus........Ω:=lim1π02π(nk=1sin(kx)2k)2dx=?

Answered by mindispower last updated on 21/Jun/21

let n,m∈N  ∫_0 ^(2π) sin(nx)sin(mx)dx=(1/2)∫_0 ^(2π) (cos(m−n)x−cos(n+m)x)dx  =(1/2)∫_0 ^(2π) cos(m−n)xdx=0,n≠m  =π,n=m.......(1)  Ω=lim_(n→∞) .(1/π)∫_0 ^(2π) (Σ_(k=1) ^n ((sin(kx))/2^(k/2) ))^2 dx  =lim_(n→∞) .(1/π)∫_0 ^(2π) Σ_(k=1) ^n .Σ_(m=1) ^n ((sin(kx)sin(mx))/2^((k+m)/2) )dx  =lim_(n→∞)  .(1/π)Σ_(k=1) ^n Σ_(m=1) ^n (1/2^((m+k)/2) )∫_0 ^(2π) sin(kx)sin(mx)dx  withe(1)  Ω=lim_(n→∞) (1/π_ )Σ_(k=1) ^n Σ_(m=k) (1/2^k ).π  =lim_(n→∞) .(1/π)Σ_(k=1) ^n (π/2^k )=Σ_(k=1) ^n (1/2^k )=1  Ω=1

letn,mN02πsin(nx)sin(mx)dx=1202π(cos(mn)xcos(n+m)x)dx=1202πcos(mn)xdx=0,nm=π,n=m.......(1)Ω=limn.1π02π(nk=1sin(kx)2k2)2dx=limn.1π02πnk=1.nm=1sin(kx)sin(mx)2k+m2dx=limn.1πnk=1nm=112m+k202πsin(kx)sin(mx)dxwithe(1)Ω=limn1πnk=1m=k12k.π=limn.1πnk=1π2k=nk=112k=1Ω=1

Commented by mnjuly1970 last updated on 21/Jun/21

       ......thanks alot mr power.....

......thanksalotmrpower.....

Commented by mindispower last updated on 22/Jun/21

pleasur

pleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com