All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 144053 by mnjuly1970 last updated on 21/Jun/21
........Calculus........Ω:=lim1π∫02π(∑nk=1sin(kx)2k)2dx=?
Answered by mindispower last updated on 21/Jun/21
letn,m∈N∫02πsin(nx)sin(mx)dx=12∫02π(cos(m−n)x−cos(n+m)x)dx=12∫02πcos(m−n)xdx=0,n≠m=π,n=m.......(1)Ω=limn→∞.1π∫02π(∑nk=1sin(kx)2k2)2dx=limn→∞.1π∫02π∑nk=1.∑nm=1sin(kx)sin(mx)2k+m2dx=limn→∞.1π∑nk=1∑nm=112m+k2∫02πsin(kx)sin(mx)dxwithe(1)Ω=limn→∞1π∑nk=1∑m=k12k.π=limn→∞.1π∑nk=1π2k=∑nk=112k=1Ω=1
Commented by mnjuly1970 last updated on 21/Jun/21
......thanksalotmrpower.....
Commented by mindispower last updated on 22/Jun/21
pleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com