Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144057 by lapache last updated on 21/Jun/21

En utilisant la transforme de laplace  Calculer  ∫_0 ^(+∞) ((tsin(xt))/(a^2 +t^2 ))dt   ∀a,x∈R^∗

EnutilisantlatransformedelaplaceCalculer0+tsin(xt)a2+t2dta,xR

Answered by qaz last updated on 21/Jun/21

I(x)=∫_0 ^∞ ((tsin (xt))/(a^2 +t^2 ))dt  L(I(x))(s)=∫_0 ^∞ ∫_0 ^∞ ((tsin (xt))/(a^2 +t^2 ))e^(−sx) dtdx                  =∫_0 ^∞ (t/(a^2 +t^2 ))∙L(sin (xt))(s)dt                  =∫_0 ^∞ (t/(a^2 +t^2 ))∙(t/(s^2 +t^2 ))dt                  =(1/(s^2 −a^2 ))∫_0 ^∞ ((s^2 /(s^2 +t^2 ))−(a^2 /(a^2 +t^2 )))dt                  =(1/(s^2 −a^2 ))(stan^(−1) (t/s)−atan^(−1) (t/a))∣_0 ^∞                   =(1/(s^2 −a^2 ))∙(π/2)(s−a)                  =(π/(2(s+a)))  I(x)=L^(−1) ((π/(2(s+a))))=(π/2)e^(−ax)

I(x)=0tsin(xt)a2+t2dtL(I(x))(s)=00tsin(xt)a2+t2esxdtdx=0ta2+t2L(sin(xt))(s)dt=0ta2+t2ts2+t2dt=1s2a20(s2s2+t2a2a2+t2)dt=1s2a2(stan1tsatan1ta)0=1s2a2π2(sa)=π2(s+a)I(x)=L1(π2(s+a))=π2eax

Answered by mathmax by abdo last updated on 21/Jun/21

residus method Φ=∫_0 ^∞  ((tsin(xt))/(a^2  +t^2 ))dt ⇒  Φ=_(t=au)     ∫_0 ^∞  ((ausin(xau))/(a^2 (1+u^2 )))(adu) =∫_0 ^∞   ((usin(xau))/(u^2  +1))du    (we suppose a>0)  Φ=(1/2)∫_(−∞) ^(+∞)  ((ue^(ixau) )/(u^2  +1))du  let ϕ(z)=((ze^(ixaz) )/(z^2  +1)) ⇒ϕ(z)=((ze^(ixaz) )/((z−i)(z+i)))  ∫_R ϕ(z)dz =2iπ Res(ϕ,i) =2iπ×((ie^(−xa) )/(2i))=πi e^(−xa)  ⇒  Φ=(π/2)e^(−xa)     if a<0 we do the changement t=−au  generally we get Φ=(π/2)e^(−x∣a∣)

residusmethodΦ=0tsin(xt)a2+t2dtΦ=t=au0ausin(xau)a2(1+u2)(adu)=0usin(xau)u2+1du(wesupposea>0)Φ=12+ueixauu2+1duletφ(z)=zeixazz2+1φ(z)=zeixaz(zi)(z+i)Rφ(z)dz=2iπRes(φ,i)=2iπ×iexa2i=πiexaΦ=π2exaifa<0wedothechangementt=augenerallywegetΦ=π2exa

Terms of Service

Privacy Policy

Contact: info@tinkutara.com