All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 144059 by 0731619 last updated on 21/Jun/21
Answered by Olaf_Thorendsen last updated on 21/Jun/21
F(x)=∫sin2xb2cos2x+a2dxF(x)=∫tan2xb2+a2cos2xdxF(x)=∫tan2xb2+a2(1+tan2x)dxLett=tanxF(t)=∫t2b2+a2(1+t2).dt1+t2F(t)=∫(a2+b2b2a2t2+a2+b2−1b21+t2)dtF(t)=a2+b2a2b2∫dtt2+a2+b2a2−1b2∫dt1+t2F(t)=a2+b2a2b2(1a2+b2a2arctanta2+b2a2)−1b2arctant+CF(t)=a2+b2ab2arctan(ata2+b2)−1b2arctant+CF(x)=a2+b2ab2arctan(a.tanxa2+b2)−xb2+C
Commented by 0731619 last updated on 21/Jun/21
thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com