Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144064 by 0731619 last updated on 21/Jun/21

Answered by MJS_new last updated on 21/Jun/21

simply let t=tan x  ⇒ answer is  −(x/b^2 )+((√(a^2 +b^2 ))/(ab^2 ))arctan ((atan x)/( (√(a^2 +b^2 )))) +C

simplylett=tanxanswerisxb2+a2+b2ab2arctanatanxa2+b2+C

Commented by 0731619 last updated on 21/Jun/21

prove this

provethis

Commented by MJS_new last updated on 21/Jun/21

easy to prove  (d/dx)[−(x/b^2 )]=−(1/b^2 )  (d/dx)[((√(a^2 +b^2 ))/(ab^2 ))arctan ((atan x)/( (√(a^2 +b^2 ))))]=  =((√(a^2 +b^2 ))/(ab^2 ))×((a(√(a^2 +b^2 )))/(a^2 +b^2 +a^2 tan^2  x))×(1/(cos^2  x))=  =((a^2 +b^2 )/(b^2 (a^2 +b^2 cos^2  x)))  ((a^2 +b^2 )/(b^2 (a^2 +b^2 cos^2  x)))−(1/b^2 )=((sin^2  x)/(a^2 +b^2 cos^2  x)) q.e.d.

easytoproveddx[xb2]=1b2ddx[a2+b2ab2arctanatanxa2+b2]==a2+b2ab2×aa2+b2a2+b2+a2tan2x×1cos2x==a2+b2b2(a2+b2cos2x)a2+b2b2(a2+b2cos2x)1b2=sin2xa2+b2cos2xq.e.d.

Commented by Dwaipayan Shikari last updated on 21/Jun/21

Q.E.D

Q.E.D

Answered by mathmax by abdo last updated on 21/Jun/21

Φ=∫ ((sin^2 x)/(b^2 cos^2 x +a^2 ))dx=∫ ((sin^2 xdx)/(b^2 (cos^2 x +(a^2 /b^2 ))))=(1/b^2 )∫ ((sin^2 x)/(λ +cos^2 x))dx  with λ=(a^2 /b^2 )>0  f(λ)=∫  ((sin^2 x)/(λ+cos^2 x))dx =∫  (((1−cos(2x))/2)/(λ+((1+cos(2x))/2)))dx  =∫   ((1−cos(2x))/(2λ+1+cos(2x)))dx =_(2x=t)  (1/2)  ∫  ((1−cost)/(2λ+1+cost))dt  =_(tan((t/2))=y)    (1/2)∫  ((1−((1−y^2 )/(1+y^2 )))/(2λ+1+((1−y^2 )/(1+y^2 ))))×((2dy)/(1+y^2 ))  =∫   ((2y^2 )/((2λ+1)+(2λ+1)y^2  +1−y^2 )))(dy/((1+y^2 )))  =2∫   (y^2 /((1+y^2 )(2λ+2+2λy^2 )))dy=∫ (y^2 /((y^2 +1)(λ+1+y^2 )))dy  F(y)=(y^2 /((y^2  +1)(y^2 +λ+1)))=(1/λ)((y^2 /(y^2 +1))−(y^2 /(y^2  +λ+1)))  =(1/λ){((y^2 +1−1)/(y^2  +1))−((y^2  +λ+1−λ−1)/(y^2  +λ+1))}  =(1/λ){−(1/(y^2  +1))+((λ+1)/(y^2  +λ+1))}

Φ=sin2xb2cos2x+a2dx=sin2xdxb2(cos2x+a2b2)=1b2sin2xλ+cos2xdxwithλ=a2b2>0f(λ)=sin2xλ+cos2xdx=1cos(2x)2λ+1+cos(2x)2dx=1cos(2x)2λ+1+cos(2x)dx=2x=t121cost2λ+1+costdt=tan(t2)=y1211y21+y22λ+1+1y21+y2×2dy1+y2=2y2(2λ+1)+(2λ+1)y2+1y2)dy(1+y2)=2y2(1+y2)(2λ+2+2λy2)dy=y2(y2+1)(λ+1+y2)dyF(y)=y2(y2+1)(y2+λ+1)=1λ(y2y2+1y2y2+λ+1)=1λ{y2+11y2+1y2+λ+1λ1y2+λ+1}=1λ{1y2+1+λ+1y2+λ+1}

Commented by mathmax by abdo last updated on 21/Jun/21

f(λ)=−(1/λ)∫ (dy/(y^2  +1))+((λ+1)/λ)∫ (dy/(y^2  +λ+1))(→y=(√(λ+1))z)  =−(1/λ)arctany +((λ+1)/λ)∫ (((√(λ+1))dz)/((λ+1)(1+z^2 )))  =−(1/λ)arctany+((√(λ+1))/λ) arctan((y/( (√(λ+1)))))+k  =−(x/λ) +((√(λ+1))/λ)arctan((1/( (√(λ+1))))tanx) +K  Φ=(1/b^2 )(−(x/(a^2 /b^2 ))+(b^2 /a^2 )(√((a^2 /b^2 )+1))arctan((1/( (√((a^2 /b^2 )+1))))tanx)+K  =−(x/a^2 )+(1/a^2 )(√((a^2  +b^2 )/b^2 ))arctan(((∣b∣)/( (√(a^2 +b^2 ))))tanx) +K

f(λ)=1λdyy2+1+λ+1λdyy2+λ+1(y=λ+1z)=1λarctany+λ+1λλ+1dz(λ+1)(1+z2)=1λarctany+λ+1λarctan(yλ+1)+k=xλ+λ+1λarctan(1λ+1tanx)+KΦ=1b2(xa2b2+b2a2a2b2+1arctan(1a2b2+1tanx)+K=xa2+1a2a2+b2b2arctan(ba2+b2tanx)+K

Terms of Service

Privacy Policy

Contact: info@tinkutara.com