Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 144072 by bobhans last updated on 21/Jun/21

Use the reduction formula to  rewrite −3 sin x −3 cos x in the  form K sin (x+α) .

$$\mathrm{Use}\:\mathrm{the}\:\mathrm{reduction}\:\mathrm{formula}\:\mathrm{to} \\ $$$$\mathrm{rewrite}\:−\mathrm{3}\:\mathrm{sin}\:\mathrm{x}\:−\mathrm{3}\:\mathrm{cos}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{form}\:\mathrm{K}\:\mathrm{sin}\:\left(\mathrm{x}+\alpha\right)\:. \\ $$

Answered by liberty last updated on 21/Jun/21

because  { ((a=−3)),((b=−3)) :} we have K=(√(a^2 +b^2 ))=3(√2)   since the terminal side of α must go  through (−3,−3) we have   cos α = ((−3)/(3(√2))) =−((√2)/2) . Now cos^(−1) (((√2)/2))=((3π)/4)  but the terminal side of ((3π)/4) is in   quadrant II, however we also have   cos (((5π)/4))=−((√2)/2) and the terminal side  for ((5π)/4) does pass through (−3,−3) in  quadrant III so α=((5π)/4) so gives   −3sin x−3cos x = 3(√2) sin (x+((5π)/4)).

$$\mathrm{because}\:\begin{cases}{\mathrm{a}=−\mathrm{3}}\\{\mathrm{b}=−\mathrm{3}}\end{cases}\:\mathrm{we}\:\mathrm{have}\:\mathrm{K}=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }=\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\:\mathrm{since}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{side}\:\mathrm{of}\:\alpha\:\mathrm{must}\:\mathrm{go} \\ $$$$\mathrm{through}\:\left(−\mathrm{3},−\mathrm{3}\right)\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\mathrm{cos}\:\alpha\:=\:\frac{−\mathrm{3}}{\mathrm{3}\sqrt{\mathrm{2}}}\:=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:.\:\mathrm{Now}\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)=\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{side}\:\mathrm{of}\:\frac{\mathrm{3}\pi}{\mathrm{4}}\:\mathrm{is}\:\mathrm{in}\: \\ $$$$\mathrm{quadrant}\:\mathrm{II},\:\mathrm{however}\:\mathrm{we}\:\mathrm{also}\:\mathrm{have}\: \\ $$$$\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}}\right)=−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{the}\:\mathrm{terminal}\:\mathrm{side} \\ $$$$\mathrm{for}\:\frac{\mathrm{5}\pi}{\mathrm{4}}\:\mathrm{does}\:\mathrm{pass}\:\mathrm{through}\:\left(−\mathrm{3},−\mathrm{3}\right)\:\mathrm{in} \\ $$$$\mathrm{quadrant}\:\mathrm{III}\:\mathrm{so}\:\alpha=\frac{\mathrm{5}\pi}{\mathrm{4}}\:\mathrm{so}\:\mathrm{gives}\: \\ $$$$−\mathrm{3sin}\:\mathrm{x}−\mathrm{3cos}\:\mathrm{x}\:=\:\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left(\mathrm{x}+\frac{\mathrm{5}\pi}{\mathrm{4}}\right). \\ $$

Answered by physicstutes last updated on 21/Jun/21

k sin(x + α) = k sin x cos α + k cos x sin α   ⇒ k cos α = −3      k sin α = −3  k = (√(3^2 +3^2 )) = 3(√2)   ((ksin α)/(k cos α)) = 1 ⇒  tan α = 1 or α = (π/4)  the above function is in quadrant 3 , so we use  α = (π/4)+π = ((5π)/4)  hence  −3 sin x − 3 cos x = 3(√2) sin (x+((5π)/4))

$${k}\:\mathrm{sin}\left({x}\:+\:\alpha\right)\:=\:{k}\:\mathrm{sin}\:{x}\:\mathrm{cos}\:\alpha\:+\:{k}\:\mathrm{cos}\:{x}\:\mathrm{sin}\:\alpha\: \\ $$$$\Rightarrow\:{k}\:\mathrm{cos}\:\alpha\:=\:−\mathrm{3} \\ $$$$\:\:\:\:{k}\:\mathrm{sin}\:\alpha\:=\:−\mathrm{3} \\ $$$${k}\:=\:\sqrt{\mathrm{3}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }\:=\:\mathrm{3}\sqrt{\mathrm{2}} \\ $$$$\:\frac{{k}\mathrm{sin}\:\alpha}{{k}\:\mathrm{cos}\:\alpha}\:=\:\mathrm{1}\:\Rightarrow\:\:\mathrm{tan}\:\alpha\:=\:\mathrm{1}\:\mathrm{or}\:\alpha\:=\:\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{the}\:\mathrm{above}\:\mathrm{function}\:\mathrm{is}\:\mathrm{in}\:\mathrm{quadrant}\:\mathrm{3}\:,\:\mathrm{so}\:\mathrm{we}\:\mathrm{use} \\ $$$$\alpha\:=\:\frac{\pi}{\mathrm{4}}+\pi\:=\:\frac{\mathrm{5}\pi}{\mathrm{4}} \\ $$$$\mathrm{hence}\:\:−\mathrm{3}\:\mathrm{sin}\:{x}\:−\:\mathrm{3}\:\mathrm{cos}\:{x}\:=\:\mathrm{3}\sqrt{\mathrm{2}}\:\mathrm{sin}\:\left({x}+\frac{\mathrm{5}\pi}{\mathrm{4}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com