Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 144109 by henderson last updated on 21/Jun/21

hi, everybody !  1. calculate : I =∫_(𝛑/6) ^( (𝛑/3)) ln(tan x)dx.  2. calculate  : lim_(x → e)  ((x(√(1−ln x)))/(x−e)) .

hi,everybody!1.calculate:I=π6π3ln(tanx)dx.2.calculate:limxex1lnxxe.

Commented by bobhans last updated on 22/Jun/21

(2) lim_(x→e)  ((e (√(1−ln x)))/(x−e)) =          lim_(x→e)  ((e(((−(1/x))/(2(√(1−ln x))))))/1) =− ∞

(2)limxee1lnxxe=limxee(1x21lnx)1=

Answered by Olaf_Thorendsen last updated on 21/Jun/21

I = ∫_(π/6) ^(π/3) (ln(tanx) dx  Let u = (π/2)−x  I = ∫_(π/6) ^(π/3) ln(cotu) du = −∫_(π/6) ^(π/3) ln(tanx) dx  I = −I  ⇒ I = 0

I=π6π3(ln(tanx)dxLetu=π2xI=π6π3ln(cotu)du=π6π3ln(tanx)dxI=II=0

Answered by mathmax by abdo last updated on 21/Jun/21

1) I=∫_(π/6) ^(π/3) log(tanx)dx  changement tanx =t give  I=∫_(1/( (√3))) ^(√3)  ((logt)/(1+t^2 ))dt  =_(t=(1/u))   −∫_(1/( (√3))) ^(√3)  ((−logu)/(1+(1/u^2 )))(−(du/u^2 ))  =−∫_(1/( (√3))) ^(√3)  ((logu)/(1+u^2 ))=−I ⇒2I=0 ⇒I=0

1)I=π6π3log(tanx)dxchangementtanx=tgiveI=133logt1+t2dt=t=1u133logu1+1u2(duu2)=133logu1+u2=I2I=0I=0

Answered by mathmax by abdo last updated on 21/Jun/21

2)1−logx>0 ⇒logx<1 ⇒x<e  f(x)=−((x(√(1−logx)))/(e−x))  changement e−x=y give  f(x)=−(((e−y)(√(1−log(e−y))))/y)=(((y−e)(√(1−log(e−y))))/y)=g(y)  (y→o^+ )  we have log(e−y)=1+log(1−(y/e))∼1−(y/e) ⇒1−log(e−y)∼(y/e)  ⇒(√(1−log(e−y)))∼((√y)/( (√e))) ⇒  g(y)∼((√y)/( (√e)y))(y−e) ⇒g(y)∼((y−e)/( (√e)(√y)))→−∞ (y→0^+ ) ⇒  lim_(x→e^− )    f(x)=−∞

2)1logx>0logx<1x<ef(x)=x1logxexchangementex=ygivef(x)=(ey)1log(ey)y=(ye)1log(ey)y=g(y)(yo+)wehavelog(ey)=1+log(1ye)1ye1log(ey)ye1log(ey)yeg(y)yey(ye)g(y)yeey(y0+)limxef(x)=

Terms of Service

Privacy Policy

Contact: info@tinkutara.com