Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 144241 by mathmax by abdo last updated on 23/Jun/21

calculate ∫_0 ^(4π)  (dx/((2+cosx)^2 ))

calculate04πdx(2+cosx)2

Answered by Ar Brandon last updated on 05/Jul/21

I=∫_0 ^(4π) (dx/((2+cosx)^2 ))=4∫_0 ^π (dx/((2+cosx)^2 )), t=tan(x/2)    =4∫_0 ^∞ (dt/((2+((1−t^2 )/(1+t^2 )))^2 ))∙(2/(1+t^2 ))=8∫_0 ^∞ ((t^2 +1)/((t^2 +3)^2 ))dt    =8∫_0 ^∞ {(1/(t^2 +3))−(2/((t^2 +3)^2 ))}dt  f(a)=∫_0 ^∞ (dt/(t^2 +a^2 ))=(π/a)⇒f ′(a)=−∫_0 ^∞ ((2a)/((t^2 +a^2 )^2 ))=−(π/a^2 )  I=8((π/( (√3)))−(π/(3(√3))))=8(((2π)/(3(√3))))=((16(√3)π)/9)

I=04πdx(2+cosx)2=40πdx(2+cosx)2,t=tanx2=40dt(2+1t21+t2)221+t2=80t2+1(t2+3)2dt=80{1t2+32(t2+3)2}dtf(a)=0dtt2+a2=πaf(a)=02a(t2+a2)2=πa2I=8(π3π33)=8(2π33)=163π9

Answered by mathmax by abdo last updated on 25/Jun/21

let f(a)=∫_0 ^(4π)  (dx/(a+cosx))   with a>1 ⇒f^′ (a)=−∫_0 ^(4π)  (dx/((a+cosx)^2 )) ⇒  −f^′ (2)=∫_0 ^(4π)  (dx/((2+cosx)^2 )) we have f(a)=∫_0 ^(2π)  (dx/(a+cosx))+∫_(2π) ^(4π)  (dx/(a+cosx))(→x=2π+t)  =2∫_0 ^(2π)  (dx/(a+cosx))=_(e^(ix)  =z)   2∫_(∣z∣=1)     (dz/(iz(a+((z+z^(−1) )/2))))  =4∫_(∣z∣=1)    ((−idz)/(z(2a+z+z^(−1) )))=−4i∫_(∣z∣=1)    (dz/(2az+z^2  +1))  ϕ(z)=(1/(z^2  +2az +1))  Δ^′  =a^2 −1>0 ⇒z_1 =−a+(√(a^2 −1)) and z_2 =−a−(√(a^2 −1))  ∣z_1 ∣−1 =∣(√(a^2 −1))−a∣−1 =a−(√(a^2 −1))−1 ⇒ϕ(z)=(1/((z−z_1 )(z−z_2 )))  =a−1−(√(a^2 −1)) and (a−1)^2 −a^2  +1 =a^2 −2a+1−a^2  +1  =2−2a =2(1−a)<0  and ∣z_2 ∣−1 =a+(√(a^2 −1))−1>0 ⇒  ∫_R ϕ(z)dz =2iπRes(ϕ,z_1 )=2iπ×(1/(z_1 −z_2 ))=((2iπ)/(2(√(a^2 −1)))) =((iπ)/( (√(a^2 −1)))) ⇒  f(a)=(−4i)×((iπ)/( (√(a^2  −1))))=((4π)/( (√(a^2 −1)))) =4π(a^2 −1)^(−(1/2))  ⇒  f^′ (a)=−2π(2a)(a^2 −1)^(−(3/2))  =((−4πa)/((a^2 −1)(√(a^2 −1)))) ⇒  f^′ (2)=((−8π)/(3(√3))) ⇒∫_0 ^(4π)  (dx/((2+cosx)^2 ))=((8π)/(3(√3)))

letf(a)=04πdxa+cosxwitha>1f(a)=04πdx(a+cosx)2f(2)=04πdx(2+cosx)2wehavef(a)=02πdxa+cosx+2π4πdxa+cosx(x=2π+t)=202πdxa+cosx=eix=z2z∣=1dziz(a+z+z12)=4z∣=1idzz(2a+z+z1)=4iz∣=1dz2az+z2+1φ(z)=1z2+2az+1Δ=a21>0z1=a+a21andz2=aa21z11=∣a21a1=aa211φ(z)=1(zz1)(zz2)=a1a21and(a1)2a2+1=a22a+1a2+1=22a=2(1a)<0andz21=a+a211>0Rφ(z)dz=2iπRes(φ,z1)=2iπ×1z1z2=2iπ2a21=iπa21f(a)=(4i)×iπa21=4πa21=4π(a21)12f(a)=2π(2a)(a21)32=4πa(a21)a21f(2)=8π3304πdx(2+cosx)2=8π33

Terms of Service

Privacy Policy

Contact: info@tinkutara.com