All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 144261 by ZiYangLee last updated on 23/Jun/21
Findthevalueoflimn→∞∑2nk=n(−1)kk.
Commented by Dwaipayan Shikari last updated on 23/Jun/21
limn→∞∑2nk=n(−1)kk=limn→∞(−1)nn−(−1)n+1n+1+(−1)n+2n+2+...1n+n=limn→∞1n∑nk=1(−1)n+k−11+kn=1nΣeπi(n+k−1)1+knIfitwaslimn→∞1n∑nk=111+kn=∫0111+xdx=ln(2)
Answered by mathmax by abdo last updated on 24/Jun/21
p(x)=∑k=n2n(−1)kkxk⇒P′(x)=∑k=n2n(−1)kxk−1=1x∑k=n2n(−x)k=k−n=j1x∑j=0n(−x)n+j=(−x)nx∑j=0n(−x)j=(−1)nxn−1×1−(−x)n+11+x=(−1)nxn−11+x(1+(−1)nxn+1)=(−1)nxn−1+x2n1+x⇒p(x)=∫0x(−1)nxn−1+x2n1+xdx+Cp(o)=0⇒c=0⇒p(x)=∫0x(−1)nxn−1+x2n1+xdxand∑k=n2n(−1)kk=p(1)=∫01(−1)nxn−1+x2n1+xdx∣p(1)∣⩽∫01xn−1dx+∫01x2ndx=1n+12n+1→0(n→+∞)⇒limn→∞∑k=n2n(−1)kk=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com