Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144261 by ZiYangLee last updated on 23/Jun/21

Find the value of lim_(n→∞)  Σ_(k=n) ^(2n)  (((−1)^k )/k).

Findthevalueoflimn2nk=n(1)kk.

Commented by Dwaipayan Shikari last updated on 23/Jun/21

lim_(n→∞) Σ_(k=n) ^(2n) (((−1)^k )/k)  =lim_(n→∞) (((−1)^n )/n)−(((−1)^(n+1) )/(n+1))+(((−1)^(n+2) )/(n+2))+...(1/(n+n))  =lim_(n→∞) (1/n)Σ_(k=1) ^n (((−1)^(n+k−1) )/(1+(k/n)))=(1/n)Σ(e^(πi(n+k−1)) /(1+(k/n)))    If it was   lim_(n→∞) (1/n)Σ_(k=1) ^n (1/(1+(k/n)))=∫_0 ^1 (1/(1+x))dx=ln (2)

limn2nk=n(1)kk=limn(1)nn(1)n+1n+1+(1)n+2n+2+...1n+n=limn1nnk=1(1)n+k11+kn=1nΣeπi(n+k1)1+knIfitwaslimn1nnk=111+kn=0111+xdx=ln(2)

Answered by mathmax by abdo last updated on 24/Jun/21

p(x)=Σ_(k=n) ^(2n)  (((−1)^k )/k)x^k  ⇒P^′ (x)=Σ_(k=n) ^(2n) (−1)^k x^(k−1)   =(1/x)Σ_(k=n) ^(2n)  (−x)^(k ) =_(k−n=j)   (1/x)Σ_(j=0) ^n (−x)^(n+j)   =(((−x)^n )/x)Σ_(j=0) ^n  (−x)^j  =(−1)^n  x^(n−1) ×((1−(−x)^(n+1) )/(1+x))  =(((−1)^n  x^(n−1) )/(1+x))(1+(−1)^n x^(n+1) )  =(((−1)^n  x^(n−1)  +x^(2n) )/(1+x)) ⇒p(x)=∫_0 ^x  (((−1)^n  x^(n−1)  +x^(2n) )/(1+x))dx +C  p(o)=0 ⇒c=0 ⇒p(x)=∫_0 ^x  (((−1)^n  x^(n−1)  +x^(2n) )/(1+x))dx and  Σ_(k=n) ^(2n)  (((−1)^k )/k)=p(1)=∫_0 ^1  (((−1)^n  x^(n−1)  +x^(2n) )/(1+x))dx  ∣p(1)∣≤∫_0 ^1 x^(n−1)  dx +∫_0 ^1  x^(2n)  dx=(1/n)+(1/(2n+1))→0(n→+∞) ⇒  lim_(n→∞) Σ_(k=n) ^(2n)  (((−1)^k )/k)=0

p(x)=k=n2n(1)kkxkP(x)=k=n2n(1)kxk1=1xk=n2n(x)k=kn=j1xj=0n(x)n+j=(x)nxj=0n(x)j=(1)nxn1×1(x)n+11+x=(1)nxn11+x(1+(1)nxn+1)=(1)nxn1+x2n1+xp(x)=0x(1)nxn1+x2n1+xdx+Cp(o)=0c=0p(x)=0x(1)nxn1+x2n1+xdxandk=n2n(1)kk=p(1)=01(1)nxn1+x2n1+xdxp(1)∣⩽01xn1dx+01x2ndx=1n+12n+10(n+)limnk=n2n(1)kk=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com