Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 144282 by SOMEDAVONG last updated on 24/Jun/21

I=∫_(π/6) ^(π/3) ((sin^(2021) x)/(sin^(2021) x+cos^(2021) x))dx=?

I=π6π3sin2021xsin2021x+cos2021xdx=?

Answered by som(math1967) last updated on 24/Jun/21

I=∫_(π/6) ^(π/3) ((sin^(2021) ((π/3)+(π/6)−x))/(sin^(2021) ((π/3)+(π/6)−x)+cos((π/3)+(π/6)−x)))dx  I=∫_(π/6) ^(π/3) ((cos^(2021) x)/(sin^(2021) x+cos^(2021) x))dx  ∴2I=∫_(π/6) ^(π/3) ((cos^(2021) x+sin^(2021) x)/(sin^(2021) x+cos^(2021) x))dx  2I=∫_(π/6) ^(π/3) dx  I=[(x/2)]_(π/6) ^(π/3) =(π/(12)) ans

I=π6π3sin2021(π3+π6x)sin2021(π3+π6x)+cos(π3+π6x)dxI=π6π3cos2021xsin2021x+cos2021xdx2I=π6π3cos2021x+sin2021xsin2021x+cos2021xdx2I=π6π3dxI=[x2]π6π3=π12ans

Commented by SOMEDAVONG last updated on 24/Jun/21

Thanks sir!

Thankssir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com