Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 144311 by mnjuly1970 last updated on 24/Jun/21

        ......Nice    ....    Calculus......      Find the value of ::           Θ :=Σ_(n =1) ^∞ (1/(4^( n)  cos^( 2)  ((( π)/( 2^( n + 2) )) )  )) =?      ..........

$$ \\ $$$$\:\:\:\:\:\:......\mathrm{Nice}\:\:\:\:....\:\:\:\:\mathrm{Calculus}...... \\ $$$$\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\Theta\::=\underset{{n}\:=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{\:{n}} \:{cos}^{\:\mathrm{2}} \:\left(\frac{\:\pi}{\:\mathrm{2}^{\:{n}\:+\:\mathrm{2}} }\:\right)\:\:}\:=? \\ $$$$\:\:\:\:.......... \\ $$

Commented by Kamel last updated on 24/Jun/21

  S_n =Σ_(k=1) ^n (1/(4^k cos^2 ((π/2^(k+2) )))), T_n =Σ_(k=1) ^n (1/(4^k sin^2 ((π/2^(k+2) ))))  So: S_n +T_n =Σ_(k=1) ^n (1/(4^k (sin((π/2^(k+2) ))cos((π/2^(k+2) )))^2 ))=Σ_(k=1) ^n (1/(4^(k−1) sin^2 ((π/2^(k+1) ))))                         =^(p=k−1) Σ_(p=0) ^(n−1) (1/(4^p sin^2 ((π/2^(p+2) ))))=2+T_n −(1/(4^n sin^2 ((π/2^(n+2) ))))  Then: S_n =2−(1/(4^n sin^2 ((π/2^(n+2) ))))  ∴  Σ_(n=1) ^(+∞) (1/(4^n cos^2 ((π/2^(n+2) ))))=2−lim_(n→+∞) ((1^ /(2^n sin((π/2^(n+2) )))))^2 =^(t=(π/2^(n+2) )) 2−lim_(t→0^+ ) ((4/π) (t/(sin(t))))^2   ∴  Σ_(n=1) ^(+∞) (1/(4^n cos^2 ((π/2^(n+2) ))))=2−((16)/π^2 )

$$ \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{k}} {cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{k}+\mathrm{2}} }\right)},\:{T}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{k}} {sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{k}+\mathrm{2}} }\right)} \\ $$$${So}:\:{S}_{{n}} +{T}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{k}} \left({sin}\left(\frac{\pi}{\mathrm{2}^{{k}+\mathrm{2}} }\right){cos}\left(\frac{\pi}{\mathrm{2}^{{k}+\mathrm{2}} }\right)\right)^{\mathrm{2}} }=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{k}−\mathrm{1}} {sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{k}+\mathrm{1}} }\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{{p}={k}−\mathrm{1}} {=}\underset{{p}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{p}} {sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{p}+\mathrm{2}} }\right)}=\mathrm{2}+{T}_{{n}} −\frac{\mathrm{1}}{\mathrm{4}^{{n}} {sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)} \\ $$$${Then}:\:{S}_{{n}} =\mathrm{2}−\frac{\mathrm{1}}{\mathrm{4}^{{n}} {sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)} \\ $$$$\therefore\:\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}} {cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)}=\mathrm{2}−\underset{{n}\rightarrow+\infty} {{lim}}\left(\frac{\overset{} {\mathrm{1}}}{\mathrm{2}^{{n}} {sin}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)}\right)^{\mathrm{2}} \overset{{t}=\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }} {=}\mathrm{2}−\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\left(\frac{\mathrm{4}}{\pi}\:\frac{{t}}{{sin}\left({t}\right)}\right)^{\mathrm{2}} \\ $$$$\therefore\:\:\underset{{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}} {cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)}=\mathrm{2}−\frac{\mathrm{16}}{\pi^{\mathrm{2}} } \\ $$

Commented by mnjuly1970 last updated on 24/Jun/21

bravo mr kamel tashakor..

$${bravo}\:{mr}\:{kamel}\:{tashakor}.. \\ $$

Answered by ArielVyny last updated on 24/Jun/21

Θ=Σ_(n=1) ^∞ (1/4^n )[1+tg^2 ((π/2^(n+2) ))]=Σ_(n=1) ^∞ ((1/4))^n +Σ_(n=1) ^∞ ((tg^2 ((π/2^(n+2) )))/4^n )  Θ=(4/3)+Σ_(n=1) ^∞ ((1/4))^n tg^2 ((π/(4×2^n )))  posons ((1/2))^n =t  Θ=(4/3)+Σ_(t=(1/2)) ^0 t^2 tg^2 ((π/4)t)=(4/3)−Σ_(t=0) ^(1/2) t^2 tg^2 ((π/4)t)  Θ=(4/3)−(1/2)Σ_(t=0) ^1 t^2 tg^2 ((π/4)t)  Θ=(4/3)−(1/2)  Θ=(5/6)

$$\Theta=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}^{{n}} }\left[\mathrm{1}+{tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)\right]=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} +\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{2}} }\right)}{\mathrm{4}^{{n}} } \\ $$$$\Theta=\frac{\mathrm{4}}{\mathrm{3}}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)^{{n}} {tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}×\mathrm{2}^{{n}} }\right) \\ $$$${posons}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} ={t} \\ $$$$\Theta=\frac{\mathrm{4}}{\mathrm{3}}+\underset{{t}=\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\mathrm{0}} {\sum}}{t}^{\mathrm{2}} {tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}{t}\right)=\frac{\mathrm{4}}{\mathrm{3}}−\underset{{t}=\mathrm{0}} {\overset{\frac{\mathrm{1}}{\mathrm{2}}} {\sum}}{t}^{\mathrm{2}} {tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}{t}\right) \\ $$$$\Theta=\frac{\mathrm{4}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{t}=\mathrm{0}} {\overset{\mathrm{1}} {\sum}}{t}^{\mathrm{2}} {tg}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{4}}{t}\right) \\ $$$$\Theta=\frac{\mathrm{4}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Theta=\frac{\mathrm{5}}{\mathrm{6}} \\ $$

Commented by mathmax by abdo last updated on 25/Jun/21

not correct!

$$\mathrm{not}\:\mathrm{correct}! \\ $$

Answered by abdullahoudou last updated on 24/Jun/21

1−(2/π)^2

$$\mathrm{1}−\left(\mathrm{2}/\pi\right)^{\mathrm{2}} \\ $$

Commented by ArielVyny last updated on 24/Jun/21

you can show that please?

$${you}\:{can}\:{show}\:{that}\:{please}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com