Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144348 by ArielVyny last updated on 24/Jun/21

Commented by Dwaipayan Shikari last updated on 24/Jun/21

See Q144057

SeeQ144057

Commented by ArielVyny last updated on 24/Jun/21

exercise 3 question2

exercise3question2

Commented by ArielVyny last updated on 24/Jun/21

thank a lot

thankalot

Answered by mathmax by abdo last updated on 25/Jun/21

 Residus method→I=∫_0 ^∞  ((tsin(tx))/(a^2  +t^2 ))dt⇒I=_(t=∣a∣y)   ∫_0 ^∞   ((∣a∣ysin(∣a∣xy))/(a^2 (y^2  +1)))∣a∣ dy  =∫_0 ^∞  ((ysin(∣a∣xy))/(y^2  +1))dy =(1/2)∫_(−∞) ^(+∞)  ((ysin(∣a∣xy))/(y^2  +1))dy  =(1/2)Im(∫_(−∞) ^(+∞)  (y/(y^2  +1))e^(i∣a∣xy) dy)   we hsve  ∫_(−∞) ^(+∞)  (y/(y^2  +1))e^(i∣a∣xy) dy =2iπRes(ϕ,i)    (ϕ(z)=(z/(z^2  +1))e^(i∣a∣xz) )  =2iπ×(i/(2i))e^(−∣a∣x)  =iπ e^(−∣a∣x)  ⇒★I=(π/2)e^(−∣a∣x) ★

ResidusmethodI=0tsin(tx)a2+t2dtI=t=∣ay0aysin(axy)a2(y2+1)ady=0ysin(axy)y2+1dy=12+ysin(axy)y2+1dy=12Im(+yy2+1eiaxydy)wehsve+yy2+1eiaxydy=2iπRes(φ,i)(φ(z)=zz2+1eiaxz)=2iπ×i2ieax=iπeaxI=π2eax

Terms of Service

Privacy Policy

Contact: info@tinkutara.com