Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 144464 by mathmax by abdo last updated on 25/Jun/21

f(x)=(2/((1+sinx)^2 ))  developp f at fourier serie

f(x)=2(1+sinx)2developpfatfourierserie

Answered by mathmax by abdo last updated on 26/Jun/21

let f(a)=(2/(a+sinx)) ⇒f^′ (a)=−(2/((a+sinx)^2 )) ⇒−f^′ (1)=(2/((1+sinx)^2 ))  we have f(a)=(2/(a+((e^(ix) −e^(−ix) )/(2i))))=((4i)/(2ia+e^(ix) −e^(−ix) ))  =_(e^(ix)  =z)    ((4i)/(2ia+z−z^(−1) ))=((4iz)/(2iaz+z^2 −1))=((4iz)/(z^2  +2iaz −1))  Δ^′ =−a^2 +1 =1−a^2  ⇒z_1 =−ia+(√(1−a^2 ))  z_2 =−ia−(√(1−a^2 ))  ⇒f(a)=((4iz)/((z−z_1 )(z−z_2 )))  =4iz((1/(z−z_1 ))−(1/(z−z_2 ))).(1/(z_1 −z_2 ))=((4i)/(2(√(1−a^2 ))))((z/(z−z_1 ))−(z/(z−z_2 )))  ∣(z/z_1 )∣=1  and ∣(z/z_2 )∣=1 ⇒f(a)=((2i)/( (√(1−a^2 ))))((z/(z_1 ((z/z_1 )−1)))−(z/(z_2 ((z/z_2 )−1))))  =((2iz)/( (√(1−a^2 ))))((1/(1−(z/z_2 )))−(1/(1−(z/z_1 ))))=((2iz)/( (√(1−a^2 ))))(Σ_(n=0) ^∞  (z^n /z_2 ^n )−Σ_(n=0) ^∞  (z^n /z_1 ^n ))  z_1 =e^(iarctan(−(a/( (√(1−a^2 ))))))  and z_2 =e^(iarctan((a/( (√(1−a^2 ))))))  ⇒  ⇒(1/z_1 ^n )=e^(inarctan((a/( (√(1−a^2 )))))) +e^(−inarctan((a/( (√(1−a^2 )))))) =2Re(....)  =2cos(narctan((a/( (√(1−a^2 )))))) ⇒  f(a)=((2iz)/( (√(1−a^2 ))))Σ_(n=0) ^∞  2cos(narctan((a/( (√(1−a^2 ))))))e^(inx)   =((4i)/( (√(1−a^2 ))))Σ_(n=0) ^∞  cos(narctan((a/( (√(1−a^2 ))))))(cos(n+1)x+isin(n+1)x)  =4i(....)−(4/( (√(1−a^2 ))))Σ_(n=0) ^∞  cos(narctan((a/( (√(1−a^2 ))))))sin(n+1)x  f(a) is reaal ⇒  f(a)=((−4)/( (√(1−a^2 ))))Σ_(n=0) ^∞  cos(narctan((a/( (√(1−a^2 ))))))sin(n+1)x  rest to calculate f^′ (a)....be continued

letf(a)=2a+sinxf(a)=2(a+sinx)2f(1)=2(1+sinx)2wehavef(a)=2a+eixeix2i=4i2ia+eixeix=eix=z4i2ia+zz1=4iz2iaz+z21=4izz2+2iaz1Δ=a2+1=1a2z1=ia+1a2z2=ia1a2f(a)=4iz(zz1)(zz2)=4iz(1zz11zz2).1z1z2=4i21a2(zzz1zzz2)zz1∣=1andzz2∣=1f(a)=2i1a2(zz1(zz11)zz2(zz21))=2iz1a2(11zz211zz1)=2iz1a2(n=0znz2nn=0znz1n)z1=eiarctan(a1a2)andz2=eiarctan(a1a2)1z1n=einarctan(a1a2)+einarctan(a1a2)=2Re(....)=2cos(narctan(a1a2))f(a)=2iz1a2n=02cos(narctan(a1a2))einx=4i1a2n=0cos(narctan(a1a2))(cos(n+1)x+isin(n+1)x)=4i(....)41a2n=0cos(narctan(a1a2))sin(n+1)xf(a)isreaalf(a)=41a2n=0cos(narctan(a1a2))sin(n+1)xresttocalculatef(a)....becontinued

Terms of Service

Privacy Policy

Contact: info@tinkutara.com