All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 144464 by mathmax by abdo last updated on 25/Jun/21
f(x)=2(1+sinx)2developpfatfourierserie
Answered by mathmax by abdo last updated on 26/Jun/21
letf(a)=2a+sinx⇒f′(a)=−2(a+sinx)2⇒−f′(1)=2(1+sinx)2wehavef(a)=2a+eix−e−ix2i=4i2ia+eix−e−ix=eix=z4i2ia+z−z−1=4iz2iaz+z2−1=4izz2+2iaz−1Δ′=−a2+1=1−a2⇒z1=−ia+1−a2z2=−ia−1−a2⇒f(a)=4iz(z−z1)(z−z2)=4iz(1z−z1−1z−z2).1z1−z2=4i21−a2(zz−z1−zz−z2)∣zz1∣=1and∣zz2∣=1⇒f(a)=2i1−a2(zz1(zz1−1)−zz2(zz2−1))=2iz1−a2(11−zz2−11−zz1)=2iz1−a2(∑n=0∞znz2n−∑n=0∞znz1n)z1=eiarctan(−a1−a2)andz2=eiarctan(a1−a2)⇒⇒1z1n=einarctan(a1−a2)+e−inarctan(a1−a2)=2Re(....)=2cos(narctan(a1−a2))⇒f(a)=2iz1−a2∑n=0∞2cos(narctan(a1−a2))einx=4i1−a2∑n=0∞cos(narctan(a1−a2))(cos(n+1)x+isin(n+1)x)=4i(....)−41−a2∑n=0∞cos(narctan(a1−a2))sin(n+1)xf(a)isreaal⇒f(a)=−41−a2∑n=0∞cos(narctan(a1−a2))sin(n+1)xresttocalculatef′(a)....becontinued
Terms of Service
Privacy Policy
Contact: info@tinkutara.com