Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 144483 by alcohol last updated on 25/Jun/21

(p_n )=(1+(1/n^2 ))(1+(2/n^2 ))...(1+(n/n^2 ))  Σ_(k=1) ^n k^2 =(1/6)n(2n+1)(n+1)  show that  (1/2)(1+(1/n))−(1/(12n^2 ))(2n+1)(n+1)<ln(p_n )<(1/2)(1+(1/n))  hence find lim_(n→∞) (p_n )  2) show that   t−(t^2 /2) ≤ln(1+t) ≤t, ∀t>0  please help

$$\left({p}_{{n}} \right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)...\left(\mathrm{1}+\frac{{n}}{{n}^{\mathrm{2}} }\right) \\ $$ $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right) \\ $$ $${show}\:{that} \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)−\frac{\mathrm{1}}{\mathrm{12}{n}^{\mathrm{2}} }\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)<{ln}\left({p}_{{n}} \right)<\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$ $${hence}\:{find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left({p}_{{n}} \right) \\ $$ $$\left.\mathrm{2}\right)\:{show}\:{that}\: \\ $$ $${t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{t}\right)\:\leqslant{t},\:\forall{t}>\mathrm{0} \\ $$ $${please}\:{help} \\ $$ $$ \\ $$

Answered by Olaf_Thorendsen last updated on 26/Jun/21

ln(1+x) = Σ_(n=0) ^∞ (−1)^n (x^(n+1) /(n+1))  ⇒ x−(x^2 /2) < ln(1+x) < x    (1)  p_n  = Π_(k=1) ^n (1+(k/n^2 ))  lnp_n  = Σ_(k=1) ^n ln(1+(k/n^2 ))  (1) : (k/n^2 )−(k^2 /(2n^4 )) < ln(1+(k/n^2 )) < (k/n^2 )  Σ_(k=1) ^n ((k/n^2 )−(k^2 /(2n^4 ))) < lnp_n =Σ_(k=1) ^n ln(1+(k/n^2 )) <Σ_(k=1) ^n (k/n^2 )  ((n(n+1))/(2n^2 ))−((n(n+1)(2n+1))/(12n^4 )) < p_n  < ((n(n+1))/(2n^2 ))  (1/2)(1+(1/n))−(((n+1)(2n+1))/(12n^3 )) < p_n  < (1/2)(1+(1/n))

$$\mathrm{ln}\left(\mathrm{1}+{x}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}} \\ $$ $$\Rightarrow\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:<\:\mathrm{ln}\left(\mathrm{1}+{x}\right)\:<\:{x}\:\:\:\:\left(\mathrm{1}\right) \\ $$ $${p}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$ $$\mathrm{ln}{p}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$ $$\left(\mathrm{1}\right)\::\:\frac{{k}}{{n}^{\mathrm{2}} }−\frac{{k}^{\mathrm{2}} }{\mathrm{2}{n}^{\mathrm{4}} }\:<\:\mathrm{ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\:<\:\frac{{k}}{{n}^{\mathrm{2}} } \\ $$ $$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{{k}}{{n}^{\mathrm{2}} }−\frac{{k}^{\mathrm{2}} }{\mathrm{2}{n}^{\mathrm{4}} }\right)\:<\:\mathrm{ln}{p}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right)\:<\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}}{{n}^{\mathrm{2}} } \\ $$ $$\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} }−\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{12}{n}^{\mathrm{4}} }\:<\:{p}_{{n}} \:<\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)−\frac{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{12}{n}^{\mathrm{3}} }\:<\:{p}_{{n}} \:<\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$

Commented byalcohol last updated on 26/Jun/21

thank you brother

$${thank}\:{you}\:{brother} \\ $$

Commented bypuissant last updated on 07/Jul/21

Desole mais il ya erreur c′est ln(p_n ) qui  est encadre^� ..  ainsi  lim_(n→+∞) ln(p_n )=(1/2)  donc  lim_(n→+∞) (p_n )=(√e).

$$\mathrm{Desole}\:\mathrm{mais}\:\mathrm{il}\:\mathrm{ya}\:\mathrm{erreur}\:\mathrm{c}'\mathrm{est}\:\mathrm{ln}\left(\mathrm{p}_{\mathrm{n}} \right)\:\mathrm{qui} \\ $$ $$\mathrm{est}\:\mathrm{encadr}\acute {\mathrm{e}}.. \\ $$ $$\mathrm{ainsi}\:\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{ln}\left(\mathrm{p}_{\mathrm{n}} \right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\mathrm{donc}\:\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \left(\mathrm{p}_{\mathrm{n}} \right)=\sqrt{\mathrm{e}}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com