Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 144534 by imjagoll last updated on 26/Jun/21

Find the shortest distance from   the origin to the hyperbola   x^2 +8xy+7y^2 =225 ,z=0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{from}\: \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{hyperbola}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225}\:,\mathrm{z}=\mathrm{0}\: \\ $$

Answered by liberty last updated on 26/Jun/21

we must find the minimum value  of x^2 +y^2  (the square of the distance  from the origin to any point in  the xy plane) subject to constraint  x^2 +8xy+7y^2 =225  by Langrange multiplier  ∅=x^2 +8xy+7y^2 +λ(x^2 +y^2 )  ∅_x =2x+8y+2λx=0 or (λ+1)x+4y=0  φ_y =8x+14y+2λy=0 or 4x+(λ+7)y=0   determinant (((λ+1     4)),((   4    λ+7)))=0 → { ((λ=−9)),((λ=1)) :}  when λ=−9 we get y=2x and   substitution in x^2 +8xy+7y^2 =225  yields x^2 =5, y^2 =20 so the shortest  distance is (√(5+20))=5  when λ=1 give x=−2y and   substitution in x^2 +8xy+7y^2 =225  yields −5y^2 =225 for which no  real solution exists.

$$\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:\left(\mathrm{the}\:\mathrm{square}\:\mathrm{of}\:\mathrm{the}\:\mathrm{distance}\right. \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{any}\:\mathrm{point}\:\mathrm{in} \\ $$$$\left.\mathrm{the}\:\mathrm{xy}\:\mathrm{plane}\right)\:\mathrm{subject}\:\mathrm{to}\:\mathrm{constraint} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225} \\ $$$$\mathrm{by}\:\mathrm{Langrange}\:\mathrm{multiplier} \\ $$$$\emptyset=\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} +\lambda\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right) \\ $$$$\emptyset_{\mathrm{x}} =\mathrm{2x}+\mathrm{8y}+\mathrm{2}\lambda\mathrm{x}=\mathrm{0}\:\mathrm{or}\:\left(\lambda+\mathrm{1}\right)\mathrm{x}+\mathrm{4y}=\mathrm{0} \\ $$$$\phi_{\mathrm{y}} =\mathrm{8x}+\mathrm{14y}+\mathrm{2}\lambda\mathrm{y}=\mathrm{0}\:\mathrm{or}\:\mathrm{4x}+\left(\lambda+\mathrm{7}\right)\mathrm{y}=\mathrm{0} \\ $$$$\begin{vmatrix}{\lambda+\mathrm{1}\:\:\:\:\:\mathrm{4}}\\{\:\:\:\mathrm{4}\:\:\:\:\lambda+\mathrm{7}}\end{vmatrix}=\mathrm{0}\:\rightarrow\begin{cases}{\lambda=−\mathrm{9}}\\{\lambda=\mathrm{1}}\end{cases} \\ $$$$\mathrm{when}\:\lambda=−\mathrm{9}\:\mathrm{we}\:\mathrm{get}\:\mathrm{y}=\mathrm{2x}\:\mathrm{and}\: \\ $$$$\mathrm{substitution}\:\mathrm{in}\:\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225} \\ $$$$\mathrm{yields}\:\mathrm{x}^{\mathrm{2}} =\mathrm{5},\:\mathrm{y}^{\mathrm{2}} =\mathrm{20}\:\mathrm{so}\:\mathrm{the}\:\mathrm{shortest} \\ $$$$\mathrm{distance}\:\mathrm{is}\:\sqrt{\mathrm{5}+\mathrm{20}}=\mathrm{5} \\ $$$$\mathrm{when}\:\lambda=\mathrm{1}\:\mathrm{give}\:\mathrm{x}=−\mathrm{2y}\:\mathrm{and}\: \\ $$$$\mathrm{substitution}\:\mathrm{in}\:\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225} \\ $$$$\mathrm{yields}\:−\mathrm{5y}^{\mathrm{2}} =\mathrm{225}\:\mathrm{for}\:\mathrm{which}\:\mathrm{no} \\ $$$$\mathrm{real}\:\mathrm{solution}\:\mathrm{exists}. \\ $$

Answered by mr W last updated on 26/Jun/21

r=distance from (0,0) to (x,y)  x=r cos θ  y=r sin θ  r^2 cos^2  θ+8r^2 cos θ sin θ+7r^2 sin^2  θ=225  r^2 (4+4sin 2θ−3cos 2θ)=225  r^2 =((225)/(4+5 sin (2θ−tan^(−1) (3/4))))≥((225)/(4+5))  ⇒r_(min) =(√((225)/9))=5

$${r}={distance}\:{from}\:\left(\mathrm{0},\mathrm{0}\right)\:{to}\:\left({x},{y}\right) \\ $$$${x}={r}\:\mathrm{cos}\:\theta \\ $$$${y}={r}\:\mathrm{sin}\:\theta \\ $$$${r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{8}{r}^{\mathrm{2}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta+\mathrm{7}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta=\mathrm{225} \\ $$$${r}^{\mathrm{2}} \left(\mathrm{4}+\mathrm{4sin}\:\mathrm{2}\theta−\mathrm{3cos}\:\mathrm{2}\theta\right)=\mathrm{225} \\ $$$${r}^{\mathrm{2}} =\frac{\mathrm{225}}{\mathrm{4}+\mathrm{5}\:\mathrm{sin}\:\left(\mathrm{2}\theta−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right)}\geqslant\frac{\mathrm{225}}{\mathrm{4}+\mathrm{5}} \\ $$$$\Rightarrow{r}_{{min}} =\sqrt{\frac{\mathrm{225}}{\mathrm{9}}}=\mathrm{5} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com