Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 144597 by mathmax by abdo last updated on 26/Jun/21

let ϕ(x)=(1/(3+cosx))  developp f at fourier serie

letφ(x)=13+cosxdeveloppfatfourierserie

Answered by Olaf_Thorendsen last updated on 26/Jun/21

a_0  = (1/T)∫_(−(T/2)) ^(+(T/2)) f(x)dx  a_0  = (1/(2π))∫_(−π) ^(+π) (dx/(3+cosx))  a_0  = (1/(2π))∫_(−π) ^(+π) (dx/(3+cosx))  Let t = tan(x/2)  a_0  = (1/(2π))∫_(−∞) ^(+∞) (1/(3+((1−t^2 )/(1+t^2 )))).((2dt)/(1+t^2 ))  a_0  = (1/π)∫_(−∞) ^(+∞) (dt/(3(1+t^2 )+(1−t^2 )))  a_0  = (1/π)∫_(−∞) ^(+∞) (dt/(2t^2 +4))  a_0  = (1/(2π))∫_(−∞) ^(+∞) (dt/(t^2 +2))  a_0  = (1/(2π))[(1/( (√2)))arctan(t/( (√2)))]_(−∞) ^(+∞)   a_0  = (1/(2(√2)π))((π/2)) = (1/(4(√2)))    a_n  = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  a_n  = (1/π)∫_(−π) ^(+π) (1/(3+cosx))cos(nx)dx  a_(n+2) +a_n  = (1/π)∫_(−π) ^(+π) ((cos((n+2)x)+cos(nx))/(3+cosx)) dx  a_(n+2) +a_n  = (1/π)∫_(−π) ^(+π) ((2cos((n+1)x).cosx)/(3+cosx)) dx  a_(n+2) +a_n  = (2/π)∫_(−π) ^(+π) cos((n+1)x) dx  − (2/π)∫_(−π) ^(+π) ((3cos((n+1)x))/(3+cosx)) dx  a_(n+2) +a_n  = (2/π)[((sin((n+1)x))/(n+1))]_(−π) ^(+π) −6a_(n+1)   a_(n+2) +6a_(n+1) +a_n  = 0   (1)  a_1  = (1/π)∫_(−π) ^(+π) ((cosx)/(3+cosx)) dx  a_1  = (1/π)∫_(−π) ^(+π) (1−(3/(3+cosx))) dx  a_1  = (1/π)∫_(−π) ^(+π) dx−6a_0   a_1  = 2−(6/(4(√2))) = 2−(3/(2(√2)))  (1) : r^2 +6r+1 = 0  r = ((−6±(√(36−4)))/2) = −3±2(√2)  a_n  = λr_1 ^n +μr_2 ^n   a_0  = λ+μ = (1/(4(√2)))  a_1  = λr_1 +μr_2  = 2−(3/(2(√2)))  λ  = (((r_2 /(4(√2)))−(2−(3/(2(√2)))))/(r_2 −r_1 ))  λ  = ((((−3+2(√2))/(4(√2)))−(2−(3/(2(√2)))))/((−3+2(√2))−(−3−2(√(2)))))  λ  = (((3/(4(√2)))−(3/2))/( 4(√2))) = (3/(32))(1−2(√2))  μ  = (((2−(3/(2(√2))))−(r_1 /(4(√2))))/(r_2 −r_1 ))  μ  = (((2−(3/(2(√2))))−((−3−2(√2))/(4(√2))))/((−3+2(√2))−(−3−2(√2))))  μ  = (((5/2)−(3/( 4(√2))))/( 4(√2))) = (1/(32))(10(√2)−3)  a_n  = λr_1 ^n +μr_2 ^n   a_n  = (3/(32))(1−2(√2))(−3+2(√2))^n +(1/(32))(10(√2)−3)(−3+2(√2))^n     b_n  = 0 ∀n (f is even)    f(x) = a_0 +Σ_(n=1) ^∞ a_n cos(((2πnx)/T))  f(x) = (1/(4(√2)))+Σ_(n=1) ^∞ a_n cos(nx)  a_n  = (3/(32))(1−2(√2))(−3+2(√2))^n +(1/(32))(10(√2)−3)(−3+2(√2))^n

a0=1TT2+T2f(x)dxa0=12ππ+πdx3+cosxa0=12ππ+πdx3+cosxLett=tanx2a0=12π+13+1t21+t2.2dt1+t2a0=1π+dt3(1+t2)+(1t2)a0=1π+dt2t2+4a0=12π+dtt2+2a0=12π[12arctant2]+a0=122π(π2)=142an=2TT2+T2f(x)cos(2πnxT)dxan=1ππ+π13+cosxcos(nx)dxan+2+an=1ππ+πcos((n+2)x)+cos(nx)3+cosxdxan+2+an=1ππ+π2cos((n+1)x).cosx3+cosxdxan+2+an=2ππ+πcos((n+1)x)dx2ππ+π3cos((n+1)x)3+cosxdxan+2+an=2π[sin((n+1)x)n+1]π+π6an+1an+2+6an+1+an=0(1)a1=1ππ+πcosx3+cosxdxa1=1ππ+π(133+cosx)dxa1=1ππ+πdx6a0a1=2642=2322(1):r2+6r+1=0r=6±3642=3±22an=λr1n+μr2na0=λ+μ=142a1=λr1+μr2=2322λ=r242(2322)r2r1λ=3+2242(2322)(3+22)(322)λ=3423242=332(122)μ=(2322)r142r2r1μ=(2322)32242(3+22)(322)μ=5234242=132(1023)an=λr1n+μr2nan=332(122)(3+22)n+132(1023)(3+22)nbn=0n(fiseven)f(x)=a0+n=1ancos(2πnxT)f(x)=142+n=1ancos(nx)an=332(122)(3+22)n+132(1023)(3+22)n

Commented by mathmax by abdo last updated on 27/Jun/21

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 27/Jun/21

ϕ(x)=(1/(3+cosx))=(1/(3+((e^(ix)  +e^(−ix) )/2)))=(2/(6+e^(ix)  +e^(−ix) ))  =_(e^(ix)  =z)    (2/(6+z+z^(−1) ))=((2z)/(6z+z^2  +1))=((2z)/(z^2  +6z +1))=w(z)  Δ^′  =3^2 −1=8 ⇒z_1 =−3+2(√2) and z_2 =−3−2(√2)  ⇒w(z)=((2z)/((z−z_1 )(z−z_2 )))=2z((1/(z−z_1 ))−(1/(z−z_2 ))).(1/(4(√2)))  =(1/(2(√2)))((z/(z−z_1 ))−(z/(z−z_2 )))  ∣(z/z_1 )∣−1=(1/(3−2(√2)))−1=((1−3+2(√2))/(3−2(√2)))=((2(√2)−2)/(3−2(√2)))>0 ⇒∣(z/z_1 )∣>1  ∣(z/z_2 )∣−1=(1/(3+2(√2)))−1=((1−3−2(√2))/(3+2(√2)))<0 ⇒∣(z/z_2 )∣<1 ⇒  w(z)=(1/(2(√2)))((1/(1−(z_1 /z)))−(z/z_2 )(1/((z/z_2 )−1)))  =(1/(2(√2)))(Σ_(n=0) ^∞  (z_1 ^n /z^n )+(z/z_2 )Σ_(n=0) ^∞  (z^n /z_2 ^n ))  =(1/(2(√2)))(Σ_(n=0) ^∞ (−3+2(√2))^n e^(−inx) +(z/z_2 )Σ_(n=0) ^∞ (1/((−3−2(√2))^n ))e^(inx) )  =(1/(2(√2)))(Σ_(n=0) ^∞ (−1)^n (3−2(√2))^n  e^(−inx)  +Σ_(n=0) ^∞ (−1)^(n+1) (3−2(√2))^(n+1) e^(i(n+1)x) )  =(1/(2(√2)))(Σ_(n=0) ^∞ (−1)^n  (3−2(√2))^n  e^(−inx)  +Σ_(n=1) ^∞ (−1)^n (3−2(√2))^n  e^(inx) )  =(1/(2(√2)))(1+Σ_(n=1) ^∞ (−1)^n (3−2(√2))^n (2cos(nx)))  w(z)=(1/(2(√2))) +(1/( (√2)))Σ_(n=1) ^∞  (−1)^n (3−2(√2))^n  cos(nx)=ϕ(x)

φ(x)=13+cosx=13+eix+eix2=26+eix+eix=eix=z26+z+z1=2z6z+z2+1=2zz2+6z+1=w(z)Δ=321=8z1=3+22andz2=322w(z)=2z(zz1)(zz2)=2z(1zz11zz2).142=122(zzz1zzz2)zz11=13221=13+22322=222322>0⇒∣zz1∣>1zz21=13+221=13223+22<0⇒∣zz2∣<1w(z)=122(11z1zzz21zz21)=122(n=0z1nzn+zz2n=0znz2n)=122(n=0(3+22)neinx+zz2n=01(322)neinx)=122(n=0(1)n(322)neinx+n=0(1)n+1(322)n+1ei(n+1)x)=122(n=0(1)n(322)neinx+n=1(1)n(322)neinx)=122(1+n=1(1)n(322)n(2cos(nx)))w(z)=122+12n=1(1)n(322)ncos(nx)=φ(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com