Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 144676 by loveineq last updated on 27/Jun/21

Let a,b,c > 0 and (a+b)(b+c) = 4. Prove that                           (1/a)+(1/b)+(1/c)+(b/(ca)) ≥ ((27)/8)  (Found by WolframAlpha)

Leta,b,c>0and(a+b)(b+c)=4.Provethat 1a+1b+1c+bca278 (FoundbyWolframAlpha)

Answered by ArielVyny last updated on 27/Jun/21

  suppose abc≤1  27abc≤32  ((27)/8)abc≤4  ((27)/8)≤(4/(abc))  or 4=(a+b)(b+c)  ((27)/8)≤((cb+ac+ab+b^2 )/(abc))  ((27)/8)≤(1/a)+(1/b)+(1/c)+(b/(ac))  then (1/a)+(1/b)+(1/c)+(b/(ac))≥((27)/8)

supposeabc1 27abc32 278abc4 2784abc or4=(a+b)(b+c) 278cb+ac+ab+b2abc 2781a+1b+1c+bac then1a+1b+1c+bac278

Commented byloveineq last updated on 28/Jun/21

nice and thanks.

niceandthanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com