Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 144701 by mathmax by abdo last updated on 28/Jun/21

calculate Σ_(n=1) ^∞  ((cos(nθ))/n^2 )

calculaten=1cos(nθ)n2

Answered by Dwaipayan Shikari last updated on 28/Jun/21

Σ_(n=1) ^∞ ((sin (nθ))/n)=(1/(2i))Σ_(n=1) ^∞ (((e^(iθ) )^n )/n)−(((e^(−iθ) )^n )/n)  =−(1/(2i))log (((1−e^(iθ) )/(1−e^(−iθ) )))=((π−θ)/2)  Σ_(n=1) ^∞ ∫_0 ^θ ((sin (nθ))/n)=((2πθ−θ^2 )/4)  Σ_(n=1) ^∞ ((cos (0))/n^2 )−((cos (nθ))/n^2 )=((2πθ−θ^2 )/4)  Σ_(n=1) ^∞ ((cos (nθ))/n^2 )=(π^2 /6)−((πθ)/2)+(θ^2 /4)

n=1sin(nθ)n=12in=1(eiθ)nn(eiθ)nn=12ilog(1eiθ1eiθ)=πθ2n=10θsin(nθ)n=2πθθ24n=1cos(0)n2cos(nθ)n2=2πθθ24n=1cos(nθ)n2=π26πθ2+θ24

Answered by mathmax by abdo last updated on 28/Jun/21

ϕ(θ)=Σ_(n=1) ^∞  ((cos(nθ))/n^2 ) ⇒ϕ^′ (θ)=−Σ_(n=1) ^∞  ((sin(nθ))/n)  =−Im(Σ_(n=1) ^∞  (e^(inθ) /n))=−Im(Σ_(n=1) ^∞  (((e^(iθ) )^n )/n))=−Im(log(1−e^(iθ) ))  we have log(1−e^(iθ) )=log(1−cosθ−isinθ)  =log(2sin^2 ((θ/2))−2isin((θ/2))cos((θ/2)))=log(−2isin((θ/2))e^((iθ)/2) )  =log2 +log(−i)+log(sin((θ/2)))+((iθ)/2)  =log(2sin((θ/2)))−((iπ)/2)+((iθ)/2) ⇒ϕ^′ (θ)=((π−θ)/2) ⇒  ϕ(θ)=(π/2)θ−(θ^2 /4) +K  but K=ϕ(0)=(π^2 /6) ⇒  ϕ(θ)=−(θ^2 /4)+((πθ)/2) +(π^2 /6)

φ(θ)=n=1cos(nθ)n2φ(θ)=n=1sin(nθ)n=Im(n=1einθn)=Im(n=1(eiθ)nn)=Im(log(1eiθ))wehavelog(1eiθ)=log(1cosθisinθ)=log(2sin2(θ2)2isin(θ2)cos(θ2))=log(2isin(θ2)eiθ2)=log2+log(i)+log(sin(θ2))+iθ2=log(2sin(θ2))iπ2+iθ2φ(θ)=πθ2φ(θ)=π2θθ24+KbutK=φ(0)=π26φ(θ)=θ24+πθ2+π26

Terms of Service

Privacy Policy

Contact: info@tinkutara.com