Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 144702 by mathmax by abdo last updated on 28/Jun/21

let g(x)=log(cosx +2sinx)  developp f at fourier serie

letg(x)=log(cosx+2sinx)developpfatfourierserie

Answered by mathmax by abdo last updated on 28/Jun/21

we have cosx +2sinx)=(√5)((1/( (√5)))cosx +(2/( (√5)))sinx)  let cosα=(1/( (√5))) and sinα=(2/( (√5))) ⇒tanα=2 ⇒α=arctan2 ⇒  cosx+2sinx=(√5)cos(x−α) ⇒g(x)=(1/2)log5 +log(cos(x−α))  the problem is turned to developp ϕ(t)=log(cost)  we have ϕ(t)=log(((e^(it) +e^(−t) )/2))=log(e^(it)  +e^(−it) )−log(2)  =it +log(1+e^(−2it) )−log2  we[have  log^′ (1+u)=(1/(1+u))=Σ_(n=0) ^∞  (−1)^n  u^n  ⇒  log(1+u)=Σ_(n=0) ^∞  (((−1)^n  u^(n+1) )/(n+1))=Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ⇒log(1+e^(−2it) )=Σ_(n=1) ^∞  (−1)^(n−1)  (e^(−2int) /n)  ⇒ϕ(t)=−log2 +it+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(cos(2nt)+isin(2nt))  =−log2+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nt)+i(t+Σ(...)sint)  ϕ(t)real ⇒ϕ(t)=−log2 +Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nt) ⇒  log(cosx+2sinx)=(1/2)log5 +ϕ(x−α)  =(1/2)log5 −log2 +Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2n(x−α))  =(1/2)log5−log2+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nx−2narctan(2))

wehavecosx+2sinx)=5(15cosx+25sinx)letcosα=15andsinα=25tanα=2α=arctan2cosx+2sinx=5cos(xα)g(x)=12log5+log(cos(xα))theproblemisturnedtodeveloppφ(t)=log(cost)wehaveφ(t)=log(eit+et2)=log(eit+eit)log(2)=it+log(1+e2it)log2we[havelog(1+u)=11+u=n=0(1)nunlog(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnlog(1+e2it)=n=1(1)n1e2intnφ(t)=log2+it+n=1(1)n1n(cos(2nt)+isin(2nt))=log2+n=1(1)n1ncos(2nt)+i(t+Σ(...)sint)φ(t)realφ(t)=log2+n=1(1)n1ncos(2nt)log(cosx+2sinx)=12log5+φ(xα)=12log5log2+n=1(1)n1ncos(2n(xα))=12log5log2+n=1(1)n1ncos(2nx2narctan(2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com