Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 77960 by jagoll last updated on 12/Jan/20

∫ ((2x^3 −1)/(x^4 +x)) dx?

$$\int\:\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} +{x}}\:{dx}? \\ $$

Commented by john santu last updated on 12/Jan/20

we divide by x^2   ∫ ((2x−(1/x^2 ))/(x^2 +(1/x))) dx  now by using integration   substitution “u“   let u = x^2 +(1/x) ⇒ du = 2x−(1/x^2 ) dx  ∫ (du/u) = ln ∣u∣+c = ln ∣x^2 +(1/x)∣+c

$${we}\:{divide}\:{by}\:{x}^{\mathrm{2}} \\ $$$$\int\:\frac{\mathrm{2}{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}}\:{dx} \\ $$$${now}\:{by}\:{using}\:{integration}\: \\ $$$${substitution}\:``{u}``\: \\ $$$${let}\:{u}\:=\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}\:\Rightarrow\:{du}\:=\:\mathrm{2}{x}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\int\:\frac{{du}}{{u}}\:=\:{ln}\:\mid{u}\mid+{c}\:=\:{ln}\:\mid{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}\mid+{c} \\ $$

Commented by jagoll last updated on 12/Jan/20

thank you

$${thank}\:{you} \\ $$

Commented by mathmax by abdo last updated on 13/Jan/20

let decompose F(x)=((2x^3 −1)/(x^4  +x)) ⇒F(x)=((2x^3 −1)/(x(x^3 +1)))  =((2x^3 −1)/(x(x+1)(x^2 −x+1))) =(a/x) +(b/(x+1)) +((cx+d)/(x^2 −x+1))  a =xF(x)∣_(x=0)  =−1  b=(x+1)F(x)∣_(x=−1) =((−3)/(−3))=1 ⇒F(x)=−(1/x)+(1/(x+1)) +((cx+d)/(x^2 −x+1))  lim_(x→+∞) xF(x)=2=c ⇒F(x)=−(1/x)+(1/(x+1)) +((2x+d)/(x^2 −x+1))  F(1)=(1/2) =−1+(1/2) +2+d ⇒d=−1 ⇒  F(x)=−(1/x)+(1/(x+1)) +((2x−1)/(x^2 −x+1)) ⇒∫F(x)dx=−ln∣x∣+ln∣x+1∣+ln(x^2 −x+1)+c    =ln∣x^3 +1∣−ln∣x∣ +c  =ln∣((x^3 +1)/x)∣ +C  =ln∣x^2  +(1/x)∣ +C

$${let}\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}^{\mathrm{4}} \:+{x}}\:\Rightarrow{F}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}\left({x}^{\mathrm{3}} +\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)}\:=\frac{{a}}{{x}}\:+\frac{{b}}{{x}+\mathrm{1}}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$${a}\:={xF}\left({x}\right)\mid_{{x}=\mathrm{0}} \:=−\mathrm{1} \\ $$$${b}=\left({x}+\mathrm{1}\right){F}\left({x}\right)\mid_{{x}=−\mathrm{1}} =\frac{−\mathrm{3}}{−\mathrm{3}}=\mathrm{1}\:\Rightarrow{F}\left({x}\right)=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+\frac{{cx}+{d}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)=\mathrm{2}={c}\:\Rightarrow{F}\left({x}\right)=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+\frac{\mathrm{2}{x}+{d}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$${F}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:=−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{2}+{d}\:\Rightarrow{d}=−\mathrm{1}\:\Rightarrow \\ $$$${F}\left({x}\right)=−\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+\frac{\mathrm{2}{x}−\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:\Rightarrow\int{F}\left({x}\right){dx}=−{ln}\mid{x}\mid+{ln}\mid{x}+\mathrm{1}\mid+{ln}\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)+{c} \\ $$$$ \\ $$$$={ln}\mid{x}^{\mathrm{3}} +\mathrm{1}\mid−{ln}\mid{x}\mid\:+{c}\:\:={ln}\mid\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}}\mid\:+{C} \\ $$$$={ln}\mid{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{x}}\mid\:+{C} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com