Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 144823 by loveineq last updated on 29/Jun/21

Let a,b > 0 and a+b+1 = 3ab. Prove that                             ((a+1)/(b+1))+((b+1)/(a+1)) ≤ a+b

$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\:\leqslant\:{a}+{b} \\ $$

Answered by ArielVyny last updated on 30/Jun/21

we know that a+b+1=3ab  we suppose ab≥1  (a+1)=3ab−b  (a+1)^2 =b^2 (3a−1)^2 =b^2 (9a^2 +1−9a)  a+1≤9ab (1)   →b+1≤9ab (2)  (((1))/((2)))+(((2))/((1)))→((a+1)/(b+1))+((b+1)/(a+1))≤2  then  3≤3ab→2≤3ab−1  we have ((a+1)/(b+1))+((b+1)/(a+1))≤2≤3ab−1=a+b  ((a+1)/(b+1))+((b+1)/(a+1))≤2≤a+b  finally ((a+1)/(b+1))+((b+1)/(a+1))≤a+b    (ab≥1)

$${we}\:{know}\:{that}\:{a}+{b}+\mathrm{1}=\mathrm{3}{ab} \\ $$ $${we}\:{suppose}\:{ab}\geqslant\mathrm{1} \\ $$ $$\left({a}+\mathrm{1}\right)=\mathrm{3}{ab}−{b} \\ $$ $$\left({a}+\mathrm{1}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \left(\mathrm{3}{a}−\mathrm{1}\right)^{\mathrm{2}} ={b}^{\mathrm{2}} \left(\mathrm{9}{a}^{\mathrm{2}} +\mathrm{1}−\mathrm{9}{a}\right) \\ $$ $${a}+\mathrm{1}\leqslant\mathrm{9}{ab}\:\left(\mathrm{1}\right)\:\:\:\rightarrow{b}+\mathrm{1}\leqslant\mathrm{9}{ab}\:\left(\mathrm{2}\right) \\ $$ $$\frac{\left(\mathrm{1}\right)}{\left(\mathrm{2}\right)}+\frac{\left(\mathrm{2}\right)}{\left(\mathrm{1}\right)}\rightarrow\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2} \\ $$ $${then}\:\:\mathrm{3}\leqslant\mathrm{3}{ab}\rightarrow\mathrm{2}\leqslant\mathrm{3}{ab}−\mathrm{1} \\ $$ $${we}\:{have}\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2}\leqslant\mathrm{3}{ab}−\mathrm{1}={a}+{b} \\ $$ $$\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant\mathrm{2}\leqslant{a}+{b} \\ $$ $${finally}\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\leqslant{a}+{b}\:\:\:\:\left({ab}\geqslant\mathrm{1}\right) \\ $$ $$ \\ $$ $$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com