All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 144829 by mathlove last updated on 29/Jun/21
sin3x+cos3x=1−12sin2xx=?
Answered by ajfour last updated on 29/Jun/21
(1−s2)3=(1−s22−s3)21−s6+3s4−3s2=1+s44+s6−s2+s5−2s3⇒s6+s52−11s48−s3+s2=0⇒s=0ors4+s32−11s28−s+1=0therearetworealpositiverootstothisquartic;says=α,βnowsinx=0,α,βx=nπ+(−1)nθwhereθ=0,α,β
Answered by liberty last updated on 29/Jun/21
sin3x+cos3x=sin2x+cos2x−12sin2xsin3x+cos3x=12sin2x+cos2xcos3x−cos2x=12sin2x−sin3xcos2x(cosx−1)=sin2x(12−sinx)cos2x(−2sin212x)=sin2x(12−2sin12xcos12x)lettanx2=t⇒tanx=2t1−t2⇒−2(t21+t2)=(2t1−t2)(12−2t1+t2)⇒−2t21+t2=(2t1−t2)(1+t2−4t2(1+t2))⇒(2t1+t2)[t2−4t+12−2t2+t]=0⇒(2t1+t2)[t2−4t+1+2t−2t32−2t2]=0⇒(2t1+t2)(2t3−t2+2t−12−2t2)=0wegett=0⇒tanx2=0→x2=0+kπ⇒x=2kπ;k∈Zfor2t3−t2+2t−1=0testt=12→14−14+1−1=0(valid)⇒factorise(2t−1)(t2+1)=0⇒tanx2=12;x2=arctan(12)+kπ⇒x=2arctan(12)+2kπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com