Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 144829 by mathlove last updated on 29/Jun/21

sin^3 x+cos^3 x=1−(1/2)sin^2 x  x=?

sin3x+cos3x=112sin2xx=?

Answered by ajfour last updated on 29/Jun/21

(1−s^2 )^3 =(1−(s^2 /2)−s^3 )^2   1−s^6 +3s^4 −3s^2       =1+(s^4 /4)+s^6 −s^2 +s^5 −2s^3   ⇒ s^6 +(s^5 /2)−((11s^4 )/8)−s^3 +s^2 =0  ⇒  s=0  or    s^4 +(s^3 /2)−((11s^2 )/8)−s+1=0  there are two real positive  roots to this quartic; say  s=α,β  now  sin x=0,α,β  x=nπ+(−1)^n θ  where  θ=0,α,β

(1s2)3=(1s22s3)21s6+3s43s2=1+s44+s6s2+s52s3s6+s5211s48s3+s2=0s=0ors4+s3211s28s+1=0therearetworealpositiverootstothisquartic;says=α,βnowsinx=0,α,βx=nπ+(1)nθwhereθ=0,α,β

Answered by liberty last updated on 29/Jun/21

sin^3 x+cos^3 x=sin^2 x+cos^2 x−(1/2)sin^2 x  sin^3 x+cos^3 x=(1/2)sin^2 x+cos^2 x  cos^3 x−cos^2 x=(1/2)sin^2 x−sin^3 x  cos^2 x(cos x−1)=sin^2 x((1/2)−sin x)  cos^2 x(−2sin^2 (1/2)x)=sin^2 x((1/2)−2sin (1/2)xcos (1/2)x)  let tan (x/2)=t⇒tan x=((2t)/(1−t^2 ))  ⇒−2((t^2 /(1+t^2 )))=(((2t)/(1−t^2 )))((1/2)−((2t)/(1+t^2 )))  ⇒((−2t^2 )/(1+t^2 ))= (((2t)/(1−t^2 )))(((1+t^2 −4t)/(2(1+t^2 ))))  ⇒(((2t)/(1+t^2 )))[((t^2 −4t+1)/(2−2t^2 )) +t ]=0  ⇒(((2t)/(1+t^2 )))[((t^2 −4t+1+2t−2t^3 )/(2−2t^2 ))]=0  ⇒(((2t)/(1+t^2 )))(((2t^3 −t^2 +2t−1)/(2−2t^2 )))=0  we get t=0  ⇒tan (x/2) = 0 →(x/2) = 0+kπ  ⇒x= 2kπ ; k∈Z    for 2t^3 −t^2 +2t−1=0  test t=(1/2)→(1/4)−(1/4)+1−1=0 (valid)  ⇒factorise (2t−1)(t^2 +1)=0  ⇒tan (x/2)=(1/2) ; (x/2)= arctan ((1/2))+kπ  ⇒x=2arctan ((1/2))+2kπ

sin3x+cos3x=sin2x+cos2x12sin2xsin3x+cos3x=12sin2x+cos2xcos3xcos2x=12sin2xsin3xcos2x(cosx1)=sin2x(12sinx)cos2x(2sin212x)=sin2x(122sin12xcos12x)lettanx2=ttanx=2t1t22(t21+t2)=(2t1t2)(122t1+t2)2t21+t2=(2t1t2)(1+t24t2(1+t2))(2t1+t2)[t24t+122t2+t]=0(2t1+t2)[t24t+1+2t2t322t2]=0(2t1+t2)(2t3t2+2t122t2)=0wegett=0tanx2=0x2=0+kπx=2kπ;kZfor2t3t2+2t1=0testt=121414+11=0(valid)factorise(2t1)(t2+1)=0tanx2=12;x2=arctan(12)+kπx=2arctan(12)+2kπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com