Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 144831 by mathdanisur last updated on 29/Jun/21

(3/(1∙2∙3)) + (5/(2∙3∙4)) + (7/(3∙4∙5)) + (9/(4∙5∙6)) + ... ∞=?

3123+5234+7345+9456+...=?

Answered by Dwaipayan Shikari last updated on 29/Jun/21

Σ_(n=1) ^∞ ((2n+1)/(n(n+1)(n+2)))=Σ_(n=1) ^∞ (1/(n(n+2)))+(1/((n+1)(n+2)))  =(1/2)Σ_(n=1) ^∞ (1/n)−(1/(n+2))+Σ_(n=2) ^∞ (1/n)−(1/(n+1))  =(1/2)(1+(1/2))+(1/2)=(5/4)

n=12n+1n(n+1)(n+2)=n=11n(n+2)+1(n+1)(n+2)=12n=11n1n+2+n=21n1n+1=12(1+12)+12=54

Commented by mathdanisur last updated on 29/Jun/21

alot cool thanks Sir

alotcoolthanksSir

Answered by mathmax by abdo last updated on 30/Jun/21

S=Σ_(n=1) ^∞  ((2n+1)/(n(n+1)(n+2)))  let decompose  F(x)=((2x+1)/(x(x+1)(x+2))) ⇒F(x)=(a/x)+(b/(x+1))+(c/(x+2))  a=(1/2) , b=((−1)/((−1)(1)))=1  ,c=((−3)/((−2)(−1)))=−(3/2) ⇒  F(x)=(1/(2x))+(1/(x+1))−(3/(2(x+2))) ⇒  Σ_(k=1) ^n  F(k)=(1/2)Σ_(k=1) ^n  (1/k)+Σ_(k=1) ^n  (1/(k+1))−(3/2)Σ_(k=1) ^n  (1/(k+2))  we have Σ_(k=1) ^n  (1/k)=H_n   Σ_(k=1) ^n  (1/(k+1))=Σ_(=2) ^(n+1)  (1/k) =H_n −1+(1/(n+1))  Σ_(k=1) ^n  (1/(k+2))=Σ_(k=3) ^(n+2)  (1/k)=H_n −(3/2)+(1/(n+1))+(1/(n+2)) ⇒  Σ_(k=1) ^n  F(k)=(1/2)H_n +H_n −1+(1/(n+1))−(3/2)(H_n −(3/2)+(1/(n+1))+(1/(n+2)))  =−1+(1/(n+1))+(9/4)−(3/(2(n+1)))−(3/(2(n+2)))→(9/4)−1=(5/4) ⇒  S=(5/4)

S=n=12n+1n(n+1)(n+2)letdecomposeF(x)=2x+1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=12,b=1(1)(1)=1,c=3(2)(1)=32F(x)=12x+1x+132(x+2)k=1nF(k)=12k=1n1k+k=1n1k+132k=1n1k+2wehavek=1n1k=Hnk=1n1k+1==2n+11k=Hn1+1n+1k=1n1k+2=k=3n+21k=Hn32+1n+1+1n+2k=1nF(k)=12Hn+Hn1+1n+132(Hn32+1n+1+1n+2)=1+1n+1+9432(n+1)32(n+2)941=54S=54

Commented by mathdanisur last updated on 30/Jun/21

cool thanks Sir

coolthanksSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com