Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 144839 by mathdanisur last updated on 29/Jun/21

If  x = (5)^(1/3)  + 3  and  y = 4 (3)^(1/3)   Prove that:  x - y < 0

Ifx=53+3andy=433 Provethat:xy<0

Answered by ajfour last updated on 29/Jun/21

(x−3)^3 =5  y^3 =192   ...(i)  x^3 −9x^2 +27x−27=5   ...(ii)  subtracting  ..(i)  from (ii)  (x−y){[(x−y)+((3y)/2)]^2 +((3y^2 )/4)}  +9x^2 +27x+160=0  for x>0,   above eq. is true  only if  x−y<0 ; (and above  eq. is of course true).

(x3)3=5 y3=192...(i) x39x2+27x27=5...(ii) subtracting..(i)from(ii) (xy){[(xy)+3y2]2+3y24} +9x2+27x+160=0 forx>0,aboveeq.istrue onlyifxy<0;(andabove eq.isofcoursetrue).

Commented bymathdanisur last updated on 29/Jun/21

thankyou Sir cool

thankyouSircool

Answered by Rakshay last updated on 29/Jun/21

suppose x−y≥0  i.e      ^3 (√5)+3−4^3 (√3)≥0         ⇒4^3 (√3)−^3 (√5)≤3.....(1)  ⇒  (4^3 (√3)−^3 (√5))^3 ≤27     (64)(3)−(5)−3(4 )(^3 (√(15)))(4^3 (√3)−^3 (√5))≤27  204−5−12(^3 (√(15)))(4^3 (√3) −^3 (√5))≤27  ⇒172−12(^3 (√(15)))(4^3 (√3)−^3 (√5))≤0  ⇒((172)/(12))≤(^3 (√(15)))(4^3 (√3)−^3 (√5))≤(3)(^3 (√(15)))  ⇒((172)/(36))≤^3 (√(15))( which isn′t true)   so our supposition is wrong, thus,  x−y<0

supposexy0 i.e35+34330 433353.....(1) (43335)327 (64)(3)(5)3(4)(315)(43335)27 204512(315)(43335)27 17212(315)(43335)0 17212(315)(43335)(3)(315) 17236315(whichisnttrue) sooursuppositioniswrong,thus, xy<0

Commented bymathdanisur last updated on 29/Jun/21

thanks Sir cool

thanksSircool

Answered by mr W last updated on 29/Jun/21

(5)^(1/3) <(6)^(1/3) =((2×3))^(1/3) <((((27)/8)×3))^(1/3) =(3/2)×(3)^(1/3)   3=((9×3))^(1/3) <((((125)/8)×3))^(1/3) =(5/2)×(3)^(1/3)   x=(5)^(1/3) +3<(3/2)×(3)^(1/3) +(5/2)×(3)^(1/3) =4(3)^(1/3) =y  ⇒x−y<0

53<63=2×33<278×33=32×33 3=9×33<1258×33=52×33 x=53+3<32×33+52×33=433=y xy<0

Commented bymathdanisur last updated on 29/Jun/21

cool Sir thanks

coolSirthanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com