All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 144924 by qaz last updated on 30/Jun/21
S(x)=∑∞n=1(2n)!!(2n+1)!!x2n=?........(∣x∣<1)
Answered by Ar Brandon last updated on 30/Jun/21
(2n+1)!!=(2n+1)!(2n)!! S(x)=∑∞n=1((2n)!!)2(2n+1)!x2n=∑∞n=122n(n!)2(2n+1)!x2n =∑∞n=1(2x)2nβ(n+1,n+1)=∫01∑∞n=1(2x)2ntn(1−t)ndt =∫01∑∞n=1(4x2t−4x2t2)ndt=∫01dt4x2t2−4x2t+1−1 =14x2∫01dt(t−12)2+1−x24x2−1=14x2⋅2∣x∣1−x2[tan−1(2∣x∣t−∣x∣1−x2)]01−1 =∣x∣x21−x2tan−1(∣x∣1−x2)−1
Commented byqaz last updated on 30/Jun/21
ifoundit′scomplicatetouseDEtosolveit.... thankyousir
Commented byAr Brandon last updated on 30/Jun/21
Je vous en prie !
Terms of Service
Privacy Policy
Contact: info@tinkutara.com