Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 144929 by gsk2684 last updated on 30/Jun/21

find the value   lim_(n→∞) (1+((1+(1/2)+(1/3)+(1/4)+...+(1/n))/n^2 ))^n

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{n}^{\mathrm{2}} }\right)^{\mathrm{n}} \:\: \\ $$

Answered by mathmax by abdo last updated on 30/Jun/21

A_n =(1+(H_n /n^2 ))^n  ⇒A_n =e^(nlog(1+(H_n /n^2 )))   H_n ∼logn +γ +o((1/n)) ⇒log(1+(H_n /n^2 ))∼log(1+((logn+γ+o((1/n)))/n^2 ))  ∼((log(n)+γ+o((1/n)))/n^2 ) ⇒nlog(1+(H_n /n^2 ))∼((logn +γ+o((1/n)))/n) →0 (n→+∞)  ⇒lim_(n→+∞)  A_n =1

$$\mathrm{A}_{\mathrm{n}} =\left(\mathrm{1}+\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\right)^{\mathrm{n}} \:\Rightarrow\mathrm{A}_{\mathrm{n}} =\mathrm{e}^{\mathrm{nlog}\left(\mathrm{1}+\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\right)} \\ $$$$\mathrm{H}_{\mathrm{n}} \sim\mathrm{logn}\:+\gamma\:+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)\:\Rightarrow\mathrm{log}\left(\mathrm{1}+\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\right)\sim\mathrm{log}\left(\mathrm{1}+\frac{\mathrm{logn}+\gamma+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)}{\mathrm{n}^{\mathrm{2}} }\right) \\ $$$$\sim\frac{\mathrm{log}\left(\mathrm{n}\right)+\gamma+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)}{\mathrm{n}^{\mathrm{2}} }\:\Rightarrow\mathrm{nlog}\left(\mathrm{1}+\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\right)\sim\frac{\mathrm{logn}\:+\gamma+\mathrm{o}\left(\frac{\mathrm{1}}{\mathrm{n}}\right)}{\mathrm{n}}\:\rightarrow\mathrm{0}\:\left(\mathrm{n}\rightarrow+\infty\right) \\ $$$$\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}_{\mathrm{n}} =\mathrm{1} \\ $$

Commented by gsk2684 last updated on 30/Jun/21

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by mathmax by abdo last updated on 30/Jun/21

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com