Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 144980 by henderson last updated on 01/Jul/21

exercise  Let a and b be natural integers such that 0<a<b.  1. Show that if a divides b, then for any naturel   number n, n^a −1 divides n^b −1.    2. For any non−zero naturel number n, prove   that the remainder of the euclidean division of   n^b −1 by n^a −1 is n^r −1 where r is the remainder  of the euclidean division of b by a.    3. For any non−zero naturel number n, show   that gcd(n^b −1, n^a −1) = n^d −1 where d = gcd(b,c).                   by professor henderson^(−) .

exercise Letaandbbenaturalintegerssuchthat0<a<b. 1.Showthatifadividesb,thenforanynaturel numbern,na1dividesnb1. 2.Foranynonzeronaturelnumbern,prove thattheremainderoftheeuclideandivisionof nb1byna1isnr1whereristheremainder oftheeuclideandivisionofbbya. 3.Foranynonzeronaturelnumbern,show thatgcd(nb1,na1)=nd1whered=gcd(b,c). byprofessorhenderson.

Answered by mindispower last updated on 01/Jul/21

 a∣b⇒n^a −1∣n^b −1  X^(cn) −1=(X^c −1)(1+X^c +X^(2c) .....+X^(.c(n−1)) )  a∣b⇒b=ma  n^b −1=n^(ma) −1=(n^a −1).(1+n^a +........+n^(a(m−1)) ).using (1)  ⇒n^a −1∣n^b −1  b=ma+r  n^b −1=n^(ma+r) −1+n^r −n^r   n^b −1=n^r (n^(ma) −1)+n^r −1  n^(a−1) ∣n^(ma) −1.....by using a∣ma  ⇒n^b −1≡(n^r −1)mod(n^a −1)  since0≤ n^r −1<min(n^a −1,n^b −1)  n^r −1 is remainder of division   n^b −1by n^a −1  let d=gcd(a,b)  ⇒n^d −1∣n^a −1,n^b −1 withe 1  supoose m∣(n^a −1,n^b −1)  b>a  b=am+r  ⇒m∣n^a −1,n^r −1  by reccuraion of euclid  ⇒m∣n^d −1⇒n^d −1>m  ⇒∀M∈N M∣(n^a −1,n^b −1)⇒M∣n^d −1  n^d −1=gcd(n^a −1,n^b −1)

abna1nb1 Xcn1=(Xc1)(1+Xc+X2c.....+X.c(n1)) abb=ma nb1=nma1=(na1).(1+na+........+na(m1)).using(1) na1nb1 b=ma+r nb1=nma+r1+nrnr nb1=nr(nma1)+nr1 na1nma1.....byusingama nb1(nr1)mod(na1) since0nr1<min(na1,nb1) nr1isremainderofdivision nb1byna1 letd=gcd(a,b) nd1na1,nb1withe1 supoosem(na1,nb1) b>a b=am+r mna1,nr1 byreccuraionofeuclid mnd1nd1>m MNM(na1,nb1)Mnd1 nd1=gcd(na1,nb1)

Commented bygreg_ed last updated on 01/Jul/21

sir, this line n^(a−1) ∣n^(ma) −1.....by using a∣ma isn′t   n^a −1∣n^(ma) −1.....by using a∣ma ?

sir,thislinena1nma1.....byusingamaisnt na1nma1.....byusingama?

Commented bymindispower last updated on 03/Jul/21

yes sir

yessir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com