All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 144980 by henderson last updated on 01/Jul/21
exercise― Letaandbbenaturalintegerssuchthat0<a<b. 1.Showthatifadividesb,thenforanynaturel numbern,na−1dividesnb−1. 2.Foranynon−zeronaturelnumbern,prove thattheremainderoftheeuclideandivisionof nb−1byna−1isnr−1whereristheremainder oftheeuclideandivisionofbbya. 3.Foranynon−zeronaturelnumbern,show thatgcd(nb−1,na−1)=nd−1whered=gcd(b,c). byprofessorhenderson―.
Answered by mindispower last updated on 01/Jul/21
a∣b⇒na−1∣nb−1 Xcn−1=(Xc−1)(1+Xc+X2c.....+X.c(n−1)) a∣b⇒b=ma nb−1=nma−1=(na−1).(1+na+........+na(m−1)).using(1) ⇒na−1∣nb−1 b=ma+r nb−1=nma+r−1+nr−nr nb−1=nr(nma−1)+nr−1 na−1∣nma−1.....byusinga∣ma ⇒nb−1≡(nr−1)mod(na−1) since0⩽nr−1<min(na−1,nb−1) nr−1isremainderofdivision nb−1byna−1 letd=gcd(a,b) ⇒nd−1∣na−1,nb−1withe1 supoosem∣(na−1,nb−1) b>a b=am+r ⇒m∣na−1,nr−1 byreccuraionofeuclid ⇒m∣nd−1⇒nd−1>m ⇒∀M∈NM∣(na−1,nb−1)⇒M∣nd−1 nd−1=gcd(na−1,nb−1)
Commented bygreg_ed last updated on 01/Jul/21
sir,thislinena−1∣nma−1.....byusinga∣maisn′t na−1∣nma−1.....byusinga∣ma?
Commented bymindispower last updated on 03/Jul/21
yessir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com