Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 144995 by liberty last updated on 01/Jul/21

Find the maximum distance   between two points on the    curve (x^4 /a^4 ) + (y^4 /b^4 ) = 1 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{distance}\: \\ $$$$\mathrm{between}\:\mathrm{two}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\:\mathrm{curve}\:\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{a}^{\mathrm{4}} }\:+\:\frac{\mathrm{y}^{\mathrm{4}} }{\mathrm{b}^{\mathrm{4}} }\:=\:\mathrm{1}\:. \\ $$

Answered by mr W last updated on 01/Jul/21

due to symmetry, the maximum   distance between two points on the  curve is two times of the maximum  distance from a point on the curve  to the origin.  point P(x,y)  distance from P(x,y) to (0,0) is r.  x=r cos θ  y=r sin θ  ((r^4 cos^4  θ)/a^4 )+((r^4 sin^4  θ)/b^4 )=1  ((cos^4  θ)/a^2 )+((sin^4  θ)/b^4 )=(1/r^4 )=Φ  (dΦ/dθ)=−((4 cos^3  θ sin θ)/a^4 )+((4 sin^3  θ cos θ)/b^4 )=0  (−((cos^2  θ)/a^4 )+((sin^2  θ)/b^4 ))cos θ sin θ=0  ⇒sin θ=0 ⇒θ=0 ⇒r=a  ⇒cos θ=0 ⇒θ=(π/2) ⇒r=b  ⇒−((cos^2  θ)/a^4 )+((sin^2  θ)/b^4 )  ⇒tan θ=(b^2 /a^2 )  ⇒(1/r_(max) ^4 )=(1/(a^4 +b^4 ))  ⇒r_(max) =((a^4 +b^4 ))^(1/4)  >a, >b  ⇒d_(max) =2r_(max) =2((a^4 +b^4 ))^(1/4)

$${due}\:{to}\:{symmetry},\:{the}\:{maximum}\: \\ $$$${distance}\:{between}\:{two}\:{points}\:{on}\:{the} \\ $$$${curve}\:{is}\:{two}\:{times}\:{of}\:{the}\:{maximum} \\ $$$${distance}\:{from}\:{a}\:{point}\:{on}\:{the}\:{curve} \\ $$$${to}\:{the}\:{origin}. \\ $$$${point}\:{P}\left({x},{y}\right) \\ $$$${distance}\:{from}\:{P}\left({x},{y}\right)\:{to}\:\left(\mathrm{0},\mathrm{0}\right)\:{is}\:{r}. \\ $$$${x}={r}\:\mathrm{cos}\:\theta \\ $$$${y}={r}\:\mathrm{sin}\:\theta \\ $$$$\frac{{r}^{\mathrm{4}} \mathrm{cos}^{\mathrm{4}} \:\theta}{{a}^{\mathrm{4}} }+\frac{{r}^{\mathrm{4}} \mathrm{sin}^{\mathrm{4}} \:\theta}{{b}^{\mathrm{4}} }=\mathrm{1} \\ $$$$\frac{\mathrm{cos}^{\mathrm{4}} \:\theta}{{a}^{\mathrm{2}} }+\frac{\mathrm{sin}^{\mathrm{4}} \:\theta}{{b}^{\mathrm{4}} }=\frac{\mathrm{1}}{{r}^{\mathrm{4}} }=\Phi \\ $$$$\frac{{d}\Phi}{{d}\theta}=−\frac{\mathrm{4}\:\mathrm{cos}^{\mathrm{3}} \:\theta\:\mathrm{sin}\:\theta}{{a}^{\mathrm{4}} }+\frac{\mathrm{4}\:\mathrm{sin}^{\mathrm{3}} \:\theta\:\mathrm{cos}\:\theta}{{b}^{\mathrm{4}} }=\mathrm{0} \\ $$$$\left(−\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{4}} }+\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{4}} }\right)\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\mathrm{0}\:\Rightarrow\theta=\mathrm{0}\:\Rightarrow{r}={a} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\mathrm{0}\:\Rightarrow\theta=\frac{\pi}{\mathrm{2}}\:\Rightarrow{r}={b} \\ $$$$\Rightarrow−\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{4}} }+\frac{\mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{4}} } \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{\mathrm{1}}{{r}_{{max}} ^{\mathrm{4}} }=\frac{\mathrm{1}}{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} } \\ $$$$\Rightarrow{r}_{{max}} =\sqrt[{\mathrm{4}}]{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} }\:>{a},\:>{b} \\ $$$$\Rightarrow{d}_{{max}} =\mathrm{2}{r}_{{max}} =\mathrm{2}\sqrt[{\mathrm{4}}]{{a}^{\mathrm{4}} +{b}^{\mathrm{4}} } \\ $$

Commented by mr W last updated on 01/Jul/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com