Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 14502 by ajfour last updated on 01/Jun/17

Commented by ajfour last updated on 01/Jun/17

Find x,y, and z  in terms of   a,b, and c using parameters  h, and k.

$${Find}\:\boldsymbol{{x}},\boldsymbol{{y}},\:{and}\:\boldsymbol{{z}}\:\:{in}\:{terms}\:{of}\: \\ $$$$\boldsymbol{{a}},\boldsymbol{{b}},\:{and}\:\boldsymbol{{c}}\:{using}\:{parameters} \\ $$$$\boldsymbol{{h}},\:{and}\:\boldsymbol{{k}}.\: \\ $$

Commented by RasheedSoomro last updated on 02/Jun/17

ajfour is adventurist in mathematics!

$$\mathrm{ajfour}\:\mathrm{is}\:\mathrm{adventurist}\:\mathrm{in}\:\mathrm{mathematics}! \\ $$

Commented by chux last updated on 02/Jun/17

seriously

$$\mathrm{seriously} \\ $$

Answered by ajfour last updated on 02/Jun/17

EQUATIONS first:  −−−−−−−−−−−−−−−−−−  Largest equilateral triangles have all  sides ,    s =x+y+z    After the  h shifting,  and   k shifting of the  lower △ , the outer hexagon  has unequal sides, namely  a,b,c,a,b,c  in the said order.    Keeping in mind that half side  length of each △ is s/2  , and  that the lower ▽ has been pulled  down by k and  moved  to the right by ′ h′.    It follows from Pythagoras  theorem that,             k^2 +((s/2)+h)^2 =a^2      ....(i)              h^2 +(((s(√3))/2)−k)^2 =b^2    ....(ii)              k^2 +((s/2)−h)^2 =c^2   .....(iii)       Again it can be observed  in the figure that               x= ((2k)/(√3))                  ...(iv)                   y= (s/2)+h−(x/2)        ...(v)              z= (s/2)−h−(x/2)       ....(vi)   eqn. (i)−(ii) yields             2hs = a^2 −c^2                        or    h = (((a^2 −c^2 ))/(2s))       ...(vii)    Adding  eqns. (i) and (iii) :        2k^2 +(s^2 /2)+2h^2 = a^2 +c^2     ...(I)  doubling eqn. (ii) gives:     2h^2 +2k^2 +((3s^2 )/2)−2(√3)ks = 2b^2        subtracting them, we find                            s^2 −2(√3)ks+(a^2 +c^2 −2b^2 )=0    ⇒  k=((s^2 +(a^2 +c^2 −2b^2 ))/(2(√3)s))    ..(viii)  continued..  Replacing for h and k from  eqns.  (vii) and (viii) in  (I) :       ((2(s^2 +a^2 +c^2 −2b^2 )^2 )/(12s^2 ))+(((a^2 −c^2 )^2 )/(2s^2 ))                         +(s^2 /2)−(a^2 +c^2 )=0  ⇒ (s^2 +a^2 +c^2 −2b^2 )^2 +3(a^2 −c^2 )^2                +3s^4 −6s^2 (a^2 +c^2 )=0  let  a^2 +c^2 −2b^2 = p ,       a^2 −c^2 = q ,  and  (a^2 +c^2 )=r,  then, s^4 +2ps^2 +3q^2 +3s^4 −6rs^2 =0    4s^4 +(2p−6r)s^2 +3q^2 =0   s^2 =(((6r−2p)±(√((2p−6r)^2 −48q^2 )))/8)  or,   s^2 =(((3r−p)±(√((3r−p)^2 −12q^2 )))/4)  After evaluating  ′s′ we find     h, and k .   Then we can calculate x,y, and z.

$$\boldsymbol{{E}}{QUATIONS}\:{first}: \\ $$$$−−−−−−−−−−−−−−−−−− \\ $$$${Largest}\:{equilateral}\:{triangles}\:{have}\:\boldsymbol{{all}} \\ $$$${sides}\:,\:\:\:\:\boldsymbol{{s}}\:=\boldsymbol{{x}}+\boldsymbol{{y}}+\boldsymbol{{z}}\:\: \\ $$$$\boldsymbol{{After}}\:\boldsymbol{{the}}\:\:\boldsymbol{{h}}\:\boldsymbol{{shifting}},\:\:{and} \\ $$$$\:\boldsymbol{{k}}\:\boldsymbol{{shifting}}\:{of}\:{the} \\ $$$$\boldsymbol{{lower}}\:\bigtriangleup\:,\:{the}\:\boldsymbol{{outer}}\:\boldsymbol{{hexagon}} \\ $$$$\boldsymbol{{has}}\:\boldsymbol{{unequal}}\:\boldsymbol{{sides}},\:{namely} \\ $$$$\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}},\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}\:\:{in}\:{the}\:{said}\:{order}. \\ $$$$ \\ $$$$\boldsymbol{{K}}{eeping}\:{in}\:{mind}\:{that}\:\boldsymbol{{half}}\:\boldsymbol{{side}} \\ $$$${length}\:{of}\:{each}\:\bigtriangleup\:{is}\:\boldsymbol{{s}}/\mathrm{2}\:\:,\:{and} \\ $$$${that}\:{the}\:{lower}\:\bigtriangledown\:{has}\:{been}\:{pulled} \\ $$$${down}\:{by}\:\boldsymbol{{k}}\:{and} \\ $$$${moved}\:\:{to}\:{the}\:{right}\:{by}\:'\:\boldsymbol{{h}}'. \\ $$$$\:\:{It}\:{follows}\:{from}\:\boldsymbol{{Pythagoras}} \\ $$$$\boldsymbol{{theorem}}\:{that}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{k}}^{\mathrm{2}} +\left(\frac{\boldsymbol{{s}}}{\mathrm{2}}+\boldsymbol{{h}}\right)^{\mathrm{2}} =\boldsymbol{{a}}^{\mathrm{2}} \:\:\:\:\:....\left(\boldsymbol{{i}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{h}}^{\mathrm{2}} +\left(\frac{\boldsymbol{{s}}\sqrt{\mathrm{3}}}{\mathrm{2}}−\boldsymbol{{k}}\right)^{\mathrm{2}} =\boldsymbol{{b}}^{\mathrm{2}} \:\:\:....\left(\boldsymbol{{ii}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{k}}^{\mathrm{2}} +\left(\frac{\boldsymbol{{s}}}{\mathrm{2}}−\boldsymbol{{h}}\right)^{\mathrm{2}} =\boldsymbol{{c}}^{\mathrm{2}} \:\:.....\left(\boldsymbol{{iii}}\right) \\ $$$$\:\:\:\:\:\boldsymbol{{A}}{gain}\:{it}\:{can}\:{be}\:{observed} \\ $$$${in}\:{the}\:{figure}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}=\:\frac{\mathrm{2}\boldsymbol{{k}}}{\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left(\boldsymbol{{iv}}\right)\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{y}}=\:\frac{\boldsymbol{{s}}}{\mathrm{2}}+\boldsymbol{{h}}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\:\:\:\:\:\:\:\:...\left(\boldsymbol{{v}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{z}}=\:\frac{\boldsymbol{{s}}}{\mathrm{2}}−\boldsymbol{{h}}−\frac{\boldsymbol{{x}}}{\mathrm{2}}\:\:\:\:\:\:\:....\left(\boldsymbol{{vi}}\right) \\ $$$$\:{eqn}.\:\left(\boldsymbol{{i}}\right)−\left(\boldsymbol{{ii}}\right)\:{yields} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{{hs}}\:=\:\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:{or}\:\:\:\:\boldsymbol{{h}}\:=\:\frac{\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} \right)}{\mathrm{2}\boldsymbol{{s}}}\:\:\:\:\:\:\:...\left(\boldsymbol{{vii}}\right) \\ $$$$\:\:{Adding}\:\:{eqns}.\:\left(\boldsymbol{{i}}\right)\:{and}\:\left(\boldsymbol{{iii}}\right)\:: \\ $$$$\:\:\:\:\:\:\mathrm{2}\boldsymbol{{k}}^{\mathrm{2}} +\frac{\boldsymbol{{s}}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}\boldsymbol{{h}}^{\mathrm{2}} =\:\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} \:\:\:\:...\left(\boldsymbol{{I}}\right) \\ $$$${doubling}\:{eqn}.\:\left(\boldsymbol{{ii}}\right)\:{gives}: \\ $$$$\:\:\:\mathrm{2}\boldsymbol{{h}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{k}}^{\mathrm{2}} +\frac{\mathrm{3}\boldsymbol{{s}}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}\sqrt{\mathrm{3}}\boldsymbol{{ks}}\:=\:\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \\ $$$$\:\:\:\:\:{subtracting}\:{them},\:{we}\:{find}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\boldsymbol{{s}}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\boldsymbol{{ks}}+\left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$ \\ $$$$\Rightarrow\:\:\boldsymbol{{k}}=\frac{\boldsymbol{{s}}^{\mathrm{2}} +\left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \right)}{\mathrm{2}\sqrt{\mathrm{3}}\boldsymbol{{s}}}\:\:\:\:..\left(\boldsymbol{{viii}}\right) \\ $$$${continued}.. \\ $$$${Replacing}\:{for}\:\boldsymbol{{h}}\:{and}\:\boldsymbol{{k}}\:{from} \\ $$$${eqns}.\:\:\left({vii}\right)\:{and}\:\left({viii}\right)\:{in}\:\:\left(\boldsymbol{{I}}\right)\:: \\ $$$$\: \\ $$$$\:\:\frac{\mathrm{2}\left(\boldsymbol{{s}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{12}\boldsymbol{{s}}^{\mathrm{2}} }+\frac{\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}\boldsymbol{{s}}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\boldsymbol{{s}}^{\mathrm{2}} }{\mathrm{2}}−\left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\:\left(\boldsymbol{{s}}^{\mathrm{2}} +\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{3}\left(\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{3}\boldsymbol{{s}}^{\mathrm{4}} −\mathrm{6}\boldsymbol{{s}}^{\mathrm{2}} \left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${let}\:\:\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{b}}^{\mathrm{2}} =\:\boldsymbol{{p}}\:,\: \\ $$$$\:\:\:\:\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} =\:\boldsymbol{{q}}\:,\:\:{and}\:\:\left(\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} \right)=\boldsymbol{{r}}, \\ $$$${then},\:\boldsymbol{{s}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{{ps}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{q}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{s}}^{\mathrm{4}} −\mathrm{6}\boldsymbol{{rs}}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\mathrm{4}\boldsymbol{{s}}^{\mathrm{4}} +\left(\mathrm{2}\boldsymbol{{p}}−\mathrm{6}\boldsymbol{{r}}\right)\boldsymbol{{s}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{q}}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\boldsymbol{{s}}^{\mathrm{2}} =\frac{\left(\mathrm{6}\boldsymbol{{r}}−\mathrm{2}\boldsymbol{{p}}\right)\pm\sqrt{\left(\mathrm{2}\boldsymbol{{p}}−\mathrm{6}\boldsymbol{{r}}\right)^{\mathrm{2}} −\mathrm{48}\boldsymbol{{q}}^{\mathrm{2}} }}{\mathrm{8}} \\ $$$${or},\:\:\:\boldsymbol{{s}}^{\mathrm{2}} =\frac{\left(\mathrm{3}\boldsymbol{{r}}−\boldsymbol{{p}}\right)\pm\sqrt{\left(\mathrm{3}\boldsymbol{{r}}−\boldsymbol{{p}}\right)^{\mathrm{2}} −\mathrm{12}\boldsymbol{{q}}^{\mathrm{2}} }}{\mathrm{4}} \\ $$$${After}\:{evaluating}\:\:'\boldsymbol{{s}}'\:{we}\:{find}\:\: \\ $$$$\:\boldsymbol{{h}},\:{and}\:\boldsymbol{{k}}\:. \\ $$$$\:\boldsymbol{{T}}{hen}\:{we}\:{can}\:{calculate}\:\boldsymbol{{x}},\boldsymbol{{y}},\:{and}\:\boldsymbol{{z}}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 02/Jun/17

mr Ajfour.it is so beautiful.  thank you for this nice job.

$${mr}\:{Ajfour}.{it}\:{is}\:{so}\:{beautiful}. \\ $$$${thank}\:{you}\:{for}\:{this}\:{nice}\:{job}. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 02/Jun/17

nice!this is only for regular hexagon.  mr Ajfor!please Q.14535.

$${nice}!{this}\:{is}\:{only}\:{for}\:{regular}\:{hexagon}. \\ $$$${mr}\:{Ajfor}!{please}\:{Q}.\mathrm{14535}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com