Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 145021 by mim24 last updated on 01/Jul/21

Answered by phally last updated on 01/Jul/21

 Derivative formula   (Cos^(−1) (u))^′ =((−u′)/( (√(1−u^2 ))))

Derivativeformula(Cos1(u))=u1u2

Answered by mathmax by abdo last updated on 01/Jul/21

y(x)=arcosx(((x−x^(−1) )/(x+x^(−1) )))=arcos(((x−(1/x))/(x+(1/x))))=arcos(((x^2 −1)/(x^2  +1))) ⇒  (dy/dx)=−(((((x^2 −1)/(x^2  +1)))^′ )/( (√(1−(((x^2 −1)/(x^2  +1)))^2 ))))  but  (((x^2 −1)/(x^2  +1)))^′  =(1−(2/(x^2 +1)))^′  =2×((2x)/((x^2 +1)^2 ))  ⇒(dy/dx)=−((4x)/((x^2  +1)^2 (√(1−(((x^2 −1)^2 )/((x^2  +1)^2 ))))))=((4x)/((x^2  +1)^2 ((√((x^2  +1)^2 −(x^2 −1)^2 ))/(x^2  +1))))  =((4x)/((x^2  +1)(√(x^4  +2x^2 +1−x^4 +2x^2 −1))))=((4x)/((x^2  +1)(√(4x^2 ))))  =((4x)/(2∣x∣(x^2  +1)))⇒(dy/dx) =((2ξ(x))/(x^2  +1))  with  ξ(x)=1 if x>0 and ξ(x)=−1 if x<0

y(x)=arcosx(xx1x+x1)=arcos(x1xx+1x)=arcos(x21x2+1)dydx=(x21x2+1)1(x21x2+1)2but(x21x2+1)=(12x2+1)=2×2x(x2+1)2dydx=4x(x2+1)21(x21)2(x2+1)2=4x(x2+1)2(x2+1)2(x21)2x2+1=4x(x2+1)x4+2x2+1x4+2x21=4x(x2+1)4x2=4x2x(x2+1)dydx=2ξ(x)x2+1withξ(x)=1ifx>0andξ(x)=1ifx<0

Commented by mathmax by abdo last updated on 01/Jul/21

(dy/dx)=−((2ξ(x))/(x^2  +1))

dydx=2ξ(x)x2+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com