Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145047 by mathdanisur last updated on 01/Jul/21

Commented by mr W last updated on 01/Jul/21

last digit is 5.

lastdigitis5.

Answered by ArielVyny last updated on 01/Jul/21

U_k =Σ_(k=1) ^(1989) k^(1989)   ln(U_k )=Σ_(k=1) ^(1989) 1989ln(k)=1989Σ_(k=1) ^(1989) ln(k)=1989ln(k!)  U_k =e^(1989ln(k!)) =(k!)^(1989)

Uk=1989k=1k1989ln(Uk)=1989k=11989ln(k)=19891989k=1ln(k)=1989ln(k!)Uk=e1989ln(k!)=(k!)1989

Commented by mathdanisur last updated on 01/Jul/21

thank you Ser, then the answer?

thankyouSer,thentheanswer?

Commented by mr W last updated on 01/Jul/21

ln (a^n +b^n )≠nln a+nln b

ln(an+bn)nlna+nlnb

Commented by mr W last updated on 02/Jul/21

1^(1989) +2^(1989) +3^(1989) +...+1989^(1989)   ≠(1×2×3×...×1989)^(1989)

11989+21989+31989+...+19891989(1×2×3×...×1989)1989

Answered by mr W last updated on 01/Jul/21

1: ⇒ 1  2: 2/4/8/6/2 ⇒2  3: 3/9/7/1/3 ⇒ 3  4: 4/6/4 ⇒4  5: ⇒5  6: ⇒ 6  7: 7/9/3/1/7 ⇒7  8: 8/4/2/6/8 ⇒ 8  9: 9/1/9 ⇒9  0: ⇒ 0  1: 1,11,21,...,1971,1981 ⇒199×1=9  2: 2,12,22,...,1972,1982 ⇒199×2=8  3: ⇒199×3=7  4: ⇒199×4=6  5: ⇒ 199×5=5  6: ⇒ 199×6=4  7: ⇒ 199×7=3  8: ⇒ 199×8=2  9: ⇒ 199×9=1  1+2+3+...+9=5

1:12:2/4/8/6/223:3/9/7/1/334:4/6/445:56:67:7/9/3/1/778:8/4/2/6/889:9/1/990:01:1,11,21,...,1971,1981199×1=92:2,12,22,...,1972,1982199×2=83:199×3=74:199×4=65:199×5=56:199×6=47:199×7=38:199×8=29:199×9=11+2+3+...+9=5

Commented by mathdanisur last updated on 01/Jul/21

a lot cool Ser, thank you

alotcoolSer,thankyou

Answered by Rasheed.Sindhi last updated on 02/Jul/21

(1^(1989) +2^(1989) +3^(1989) +...+1989^(1989) )(mod10)  By observing various powers of   various numbers we conclude:  a^(4n+1) ≡a(mod 10)  a^(1989) =a^(497×4+1) ≡a(mod 10)  1^(1989) +2^(1989) +3^(1989) +...+1989^(1989) (mod10)  =1^(497×4+1) +2^(497×4+1) +...1989^(497×4+1) (mod 10  =1+2+3+...+1989(mod 10)  =((1989×1990)/2)(mod 10)  =1979055(mod 10)  =5

(11989+21989+31989+...+19891989)(mod10)Byobservingvariouspowersofvariousnumbersweconclude:a4n+1a(mod10)a1989=a497×4+1a(mod10)11989+21989+31989+...+19891989(mod10)=1497×4+1+2497×4+1+...1989497×4+1(mod10=1+2+3+...+1989(mod10)=1989×19902(mod10)=1979055(mod10)=5

Commented by mathdanisur last updated on 02/Jul/21

Thankyou Ser, a lot cool

ThankyouSer,alotcool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com