All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 145064 by akolade last updated on 02/Jul/21
∫cos2xln(1+tanx)dx
Answered by mathmax by abdo last updated on 02/Jul/21
Ψ=∫cos(2x)log(1+tanx)dxbypartsΨ=sin(2x)2log(1+tanx)−∫sin(2x)2×(1+tan2x)1+tanxdx∫sin(2x).1+tan2x1+tanxdx=tanx=t∫2t1+t2×1+t21+tdt1+t2=2∫t(t+1)(t2+1)dtletdecomposeF(t)=t(t+1)(t2+1)F(t)=at+1+bt+ct2+1⇒a=−12limt→+∞tF(t)=0=a+b⇒b=12F(0)=0=a+c⇒c=12⇒F(t)=−12(t+1)+12×t+1t2+1⇒∫F(t)dt=−12log∣t+1∣+14log(t2+1)+12arctant+K⇒Ψ=12sin(2x)log(1+tanx)+12log∣tanx+1∣−14log(1+tan2x)+x2+K
Terms of Service
Privacy Policy
Contact: info@tinkutara.com