Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 145119 by imjagoll last updated on 02/Jul/21

                (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) =?

5log53(5)3log53(3)=?

Answered by Rasheed.Sindhi last updated on 03/Jul/21

 (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) =?   log _(5/3) (5)=a   ;  log _(5/3) (3)=b    ((5/3))^a =5   ; ((5/3))^b =3  ((((5/3))^a )/(((5/3))^b ))=(5/3)  ((5/3))^(a−b) =((5/3))^1   a−b=1→b=a−1  (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) )=(5^a /3^b )=(5^a /3^(a−1) )  =3((5/3))^a   =3((5/3))^(log _(5/3) (5)) =3(5)=15       determinant (((b^(log_b (a)) =a)))

5log53(5)3log53(3)=?log53(5)=a;log53(3)=b(53)a=5;(53)b=3(53)a(53)b=53(53)ab=(53)1ab=1b=a15log53(5)3log53(3)=5a3b=5a3a1=3(53)a=3(53)log53(5)=3(5)=15blogb(a)=a

Answered by liberty last updated on 03/Jul/21

let  { ((log _(5/3) (5)=x ⇒5^(x−1) =3^x )),((log _(5/3) (3)=y⇒5^y =3^(y+1) )) :}    { ((5 = 3^(x/(x−1)) )),(((3^(x/(x−1)) )^y = 3^(y+1) )) :}⇒((xy)/(x−1))=y+1  ⇒ xy=xy+x−y−1  ⇒x=y+1 . so the value of   (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) = (5^x /3^y ) = ((5.5^y )/3^y )  ⇒ 5×((5/3))^y = 5×3 = 15

let{log53(5)=x5x1=3xlog53(3)=y5y=3y+1{5=3xx1(3xx1)y=3y+1xyx1=y+1xy=xy+xy1x=y+1.sothevalueof5log53(5)3log53(3)=5x3y=5.5y3y5×(53)y=5×3=15

Answered by Rasheed.Sindhi last updated on 03/Jul/21

                (5^(log _(5/3) (5)) /3^(log _(5/3) (3)) )        =((    (5^(log _(5/3) (5)) /3^(log _(5/3) (5)) )×3^(log _(5/3) (5))    )/3^(log _(5/3) (3)) )    =((5/3))^(log _(5/3) (5)) ×3^(log _(5/3) (5)−log _(5/3) (3))    determinant (((b^(log_b a) =a)))  =5×3^(log_(5/3) ((5/3))) =5×3^1 =15   determinant (((log_a a=1)))

5log53(5)3log53(3)=5log53(5)3log53(5)×3log53(5)3log53(3)=(53)log53(5)×3log53(5)log53(3)blogba=a=5×3log53(53)=5×31=15logaa=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com