Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 145190 by qaz last updated on 03/Jul/21

f(x)+f(1−(1/x))=tan^(−1) x,(x≠0)  Find f(x)=?

f(x)+f(11x)=tan1x,(x0)Findf(x)=?

Answered by EDWIN88 last updated on 03/Jul/21

(1)f(x)+f(((x−1)/x))= tan^(−1) (x)   replace x→((x−1)/x)  (2)f(((x−1)/x))+f(((((x−1)/x)−1)/((x−1)/x)))=tan^(−1) (((x−1)/x))  ⇒f(((x−1)/x))+f((1/(1−x)))=tan^(−1) (((x−1)/x))  replace x→(1/(1−x))  (3)f((1/(1−x)))+f((((1/(1−x))−1)/(1/(1−x))))=tan^(−1) ((1/(1−x)))  ⇒f((1/(1−x)))+f(x)= tan^(−1) ((1/(1−x)))  sum equation (1),(2),(3)  ⇒2 [f(x)+f((1/(1−x)))+f(((x−1)/x))]=tan^(−1) (x)+tan^(−1) (((x−1)/x))+tan^(−1) ((1/(1−x)))  ⇒2 [f(x)+tan^(−1) (((x−1)/x))]=tan^(−1) (x)+tan^(−1) (((x−1)/x))+tan^(−1) ((1/(1−x)))  2f(x)=tan^(−1) (x)+tan^(−1) ((1/(1−x)))−tan^(−1) (((x−1)/x))  f(x)=(1/2)[ tan^(−1) (x)+tan^(−1) ((1/(1−x)))−tan^(−1) (((x−1)/x))]   =(1/2)[ tan^(−1) (((x+(1/(1−x)))/(1−(x/(1−x)))))−tan^(−1) (((x−1)/x))]  =(1/2)[ tan^(−1) (((x+1−x^2 )/(1−2x)))−tan^(−1) (((x−1)/x))]  =(1/2)tan^(−1) (((((x+1−x^2 )/(1−2x))−((x−1)/x))/(1+(((x+1−x^2 )(x−1))/((1−2x)x)))))  =(1/2)tan^(−1) (((x^2 +x−x^3 −(1−2x)(x−1))/(1−2x^2 +(x−1)(x+1−x^2 ))))

(1)f(x)+f(x1x)=tan1(x)replacexx1x(2)f(x1x)+f(x1x1x1x)=tan1(x1x)f(x1x)+f(11x)=tan1(x1x)replacex11x(3)f(11x)+f(11x111x)=tan1(11x)f(11x)+f(x)=tan1(11x)sumequation(1),(2),(3)2[f(x)+f(11x)+f(x1x)]=tan1(x)+tan1(x1x)+tan1(11x)2[f(x)+tan1(x1x)]=tan1(x)+tan1(x1x)+tan1(11x)2f(x)=tan1(x)+tan1(11x)tan1(x1x)f(x)=12[tan1(x)+tan1(11x)tan1(x1x)]=12[tan1(x+11x1x1x)tan1(x1x)]=12[tan1(x+1x212x)tan1(x1x)]=12tan1(x+1x212xx1x1+(x+1x2)(x1)(12x)x)=12tan1(x2+xx3(12x)(x1)12x2+(x1)(x+1x2))

Commented by qaz last updated on 03/Jul/21

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com