Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 1453 by 112358 last updated on 06/Aug/15

Show that                     Σ_(r=1) ^n e^(rx) =((e^x (e^(nx) −1))/(e^x −1))       (∗)  if   e^(rx) =cos(irx)−isin(irx) and x≠0 .  [Do not treat (∗) as a GP to  directly obtain the result.]

$${Show}\:{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} =\frac{{e}^{{x}} \left({e}^{{nx}} −\mathrm{1}\right)}{{e}^{{x}} −\mathrm{1}}\:\:\:\:\:\:\:\left(\ast\right) \\ $$$${if}\:\:\:{e}^{{rx}} ={cos}\left({irx}\right)−{isin}\left({irx}\right)\:{and}\:{x}\neq\mathrm{0}\:. \\ $$$$\left[{Do}\:{not}\:{treat}\:\left(\ast\right)\:{as}\:{a}\:{GP}\:{to}\right. \\ $$$$\left.{directly}\:{obtain}\:{the}\:{result}.\right] \\ $$

Answered by 123456 last updated on 13/Aug/15

S_n =Σ_(r=1) ^n e^(rx) ,n∈N^∗   e^x S_n =e^x Σ_(r=1) ^n e^(rx) =Σ_(r=1) ^n e^x e^(rx)            =Σ_(r=1) ^n e^((r+1)x) =Σ_(p=2) ^(n+1) e^(px) =Σ_(r=2) ^(n+1) e^(rx)   (p=r+1,r=1⇒p=2,r=n⇒p=n+1)  e^x S_n −S_n =Σ_(r=2) ^(n+1) e^(rx) −Σ_(r=1) ^n e^(rx)   (e^x −1)S_n =e^((n+1)x) +Σ_(r=2) ^n e^(rx) −Σ_(r=2) ^n e^(rx) −e^x   S_n =((e^((n+1)x) −e^x )/(e^x −1))=((e^x (e^(nx) −1))/(e^x −1)),e^x ≠1  e^x =1  S_n =Σ_(r=1) ^n 1=n

$$\mathrm{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} ,{n}\in\mathbb{N}^{\ast} \\ $$$${e}^{{x}} \mathrm{S}_{{n}} ={e}^{{x}} \underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{x}} {e}^{{rx}} \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\left({r}+\mathrm{1}\right){x}} =\underset{{p}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{px}} =\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} \:\:\left({p}={r}+\mathrm{1},{r}=\mathrm{1}\Rightarrow{p}=\mathrm{2},{r}={n}\Rightarrow{p}={n}+\mathrm{1}\right) \\ $$$${e}^{{x}} \mathrm{S}_{{n}} −\mathrm{S}_{{n}} =\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} −\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} \\ $$$$\left({e}^{{x}} −\mathrm{1}\right)\mathrm{S}_{{n}} ={e}^{\left({n}+\mathrm{1}\right){x}} +\underset{{r}=\mathrm{2}} {\overset{{n}} {\sum}}{e}^{{rx}} −\underset{{r}=\mathrm{2}} {\overset{{n}} {\sum}}{e}^{{rx}} −{e}^{{x}} \\ $$$$\mathrm{S}_{{n}} =\frac{{e}^{\left({n}+\mathrm{1}\right){x}} −{e}^{{x}} }{{e}^{{x}} −\mathrm{1}}=\frac{{e}^{{x}} \left({e}^{{nx}} −\mathrm{1}\right)}{{e}^{{x}} −\mathrm{1}},{e}^{{x}} \neq\mathrm{1} \\ $$$${e}^{{x}} =\mathrm{1} \\ $$$$\mathrm{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{1}={n} \\ $$

Commented by 112358 last updated on 06/Aug/15

I appreciate your approach.

$${I}\:{appreciate}\:{your}\:{approach}.\: \\ $$

Commented by Rasheed Ahmad last updated on 13/Aug/15

Σ_(r=1) ^n e^((r+1)x) =Σ_(r=2) ^(n+1) e^(rx)        (How? pl explain, I am asking                                           for learning. Question should not be   treated as an objection.)

$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\left({r}+\mathrm{1}\right){x}} =\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} \:\: \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{How}}?\:\boldsymbol{\mathrm{pl}}\:\boldsymbol{\mathrm{explain}},\:\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{am}}\:\boldsymbol{\mathrm{asking}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\right. \\ $$$$\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{learning}}.\:\boldsymbol{\mathrm{Question}}\:\boldsymbol{\mathrm{should}}\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{be}}\: \\ $$$$\left.\boldsymbol{\mathrm{treated}}\:\boldsymbol{\mathrm{as}}\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{objection}}.\right) \\ $$$$ \\ $$

Commented by 112358 last updated on 13/Aug/15

Σ_(r=1) ^n e^((r+1)x) =e^(2x) +e^(3x) +...+e^((n+1)x)    (∗)  (∗) is equal to Σ_(r=2) ^(n+1) e^(rx)  since you  acquire the same pattern of powers  of e as r goes up to n if you denote (∗) by Σ_(r=2) ^(n+1) e^(rx) .  Σ_(r=2) ^(n+1) e^(rx) =e^(2x) +e^(3x) +...+e^((n+1)x) =Σ_(r=1) ^n e^((r+1)x)   I had hoped that someone would  have tried the more lengthy route  which I had found as an alternative  way to finding Σ_(r=1) ^n e^(rx) .

$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\left({r}+\mathrm{1}\right){x}} ={e}^{\mathrm{2}{x}} +{e}^{\mathrm{3}{x}} +...+{e}^{\left({n}+\mathrm{1}\right){x}} \:\:\:\left(\ast\right) \\ $$$$\left(\ast\right)\:{is}\:{equal}\:{to}\:\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} \:{since}\:{you} \\ $$$${acquire}\:{the}\:{same}\:{pattern}\:{of}\:{powers} \\ $$$${of}\:{e}\:{as}\:{r}\:{goes}\:{up}\:{to}\:{n}\:{if}\:{you}\:{denote}\:\left(\ast\right)\:{by}\:\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} . \\ $$$$\underset{{r}=\mathrm{2}} {\overset{{n}+\mathrm{1}} {\sum}}{e}^{{rx}} ={e}^{\mathrm{2}{x}} +{e}^{\mathrm{3}{x}} +...+{e}^{\left({n}+\mathrm{1}\right){x}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{\left({r}+\mathrm{1}\right){x}} \\ $$$${I}\:{had}\:{hoped}\:{that}\:{someone}\:{would} \\ $$$${have}\:{tried}\:{the}\:{more}\:{lengthy}\:{route} \\ $$$${which}\:{I}\:{had}\:{found}\:{as}\:{an}\:{alternative} \\ $$$${way}\:{to}\:{finding}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} . \\ $$$$ \\ $$

Commented by Rasheed Ahmad last updated on 13/Aug/15

THANKS For explaining!  Your approach is realy appreciable!

$$\boldsymbol{\mathrm{THANKS}}\:\boldsymbol{\mathrm{For}}\:\boldsymbol{\mathrm{explaining}}! \\ $$$$\mathrm{Y}\boldsymbol{\mathrm{our}}\:\boldsymbol{\mathrm{approach}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{realy}}\:\boldsymbol{\mathrm{appreciable}}! \\ $$

Commented by 123456 last updated on 13/Aug/15

L=lim_(x→0) ((e^((n+1)x) −e^x )/(e^x −1))=lim_(x→0) ((e^x (e^(nx) −1))/(e^x −1))  L=lim_(x→0)  e^x lim_(x→0) ((e^(nx) −1)/(e^x −1))=lim_(x→0) ((e^(nx) −1)/(e^x −1))  lim_(x→0)  ((e^x −1)/x)=1  L=lim_(x→0) ((e^(nx) −1)/(e^x −1))=lim_(x→0) ((((nx)/(nx))(e^(nx) −1))/((x/x)(e^x −1)))  L=lim_(x→0) ((nx((e^(nx) −1)/(nx)))/(x((e^x −1)/x)))=nlim_(x→0) (((e^(nx) −1)/(nx))/((e^x −1)/x))  L=n((lim_(x→0) ((e^(nx) −1)/(nx)))/(lim_(x→0) ((e^x −1)/x)))(y=nx,x→0≡y→0)  L=nlim_(y→0) ((e^y −1)/y)=n

$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\left({n}+\mathrm{1}\right){x}} −{e}^{{x}} }{{e}^{{x}} −\mathrm{1}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} \left({e}^{{nx}} −\mathrm{1}\right)}{{e}^{{x}} −\mathrm{1}} \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{e}^{{x}} \underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{nx}} −\mathrm{1}}{{e}^{{x}} −\mathrm{1}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{nx}} −\mathrm{1}}{{e}^{{x}} −\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{{x}} −\mathrm{1}}{{x}}=\mathrm{1} \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{nx}} −\mathrm{1}}{{e}^{{x}} −\mathrm{1}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{nx}}{{nx}}\left({e}^{{nx}} −\mathrm{1}\right)}{\frac{{x}}{{x}}\left({e}^{{x}} −\mathrm{1}\right)} \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{nx}\frac{{e}^{{nx}} −\mathrm{1}}{{nx}}}{{x}\frac{{e}^{{x}} −\mathrm{1}}{{x}}}={n}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{e}^{{nx}} −\mathrm{1}}{{nx}}}{\frac{{e}^{{x}} −\mathrm{1}}{{x}}} \\ $$$$\mathrm{L}={n}\frac{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{nx}} −\mathrm{1}}{{nx}}}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} −\mathrm{1}}{{x}}}\left({y}={nx},{x}\rightarrow\mathrm{0}\equiv{y}\rightarrow\mathrm{0}\right) \\ $$$$\mathrm{L}={n}\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{y}} −\mathrm{1}}{{y}}={n} \\ $$

Commented by 112358 last updated on 13/Aug/15

L=lim_(x→0) S_n =lim_(x→0) ((e^((n+1)x) −e^x )/(e^x −1))  By L′Hopital′s rule  L=lim_(x→0) (((d/dx)(e^((n+1)x) −e^x ))/((d/dx)(e^x −1)))=lim_(x→0) (((n+1)e^((n+1)x) −e^x )/e^x )  L=(((n+1)e^0 −e^0 )/e^0 )=n+1−1=n .  ∴lim_(x→0) S_n =n    which supports the result  S_n =n  when x=0 for S_n =Σ_(r=1) ^n e^(rx)  .

$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{S}_{{n}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{\left({n}+\mathrm{1}\right){x}} −{e}^{{x}} }{{e}^{{x}} −\mathrm{1}} \\ $$$${By}\:{L}'{Hopital}'{s}\:{rule} \\ $$$${L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{{d}}{{dx}}\left({e}^{\left({n}+\mathrm{1}\right){x}} −{e}^{{x}} \right)}{\frac{{d}}{{dx}}\left({e}^{{x}} −\mathrm{1}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left({n}+\mathrm{1}\right){e}^{\left({n}+\mathrm{1}\right){x}} −{e}^{{x}} }{{e}^{{x}} } \\ $$$${L}=\frac{\left({n}+\mathrm{1}\right){e}^{\mathrm{0}} −{e}^{\mathrm{0}} }{{e}^{\mathrm{0}} }={n}+\mathrm{1}−\mathrm{1}={n}\:. \\ $$$$\therefore\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{S}_{{n}} ={n}\:\:\:\:{which}\:{supports}\:{the}\:{result} \\ $$$${S}_{{n}} ={n}\:\:{when}\:{x}=\mathrm{0}\:{for}\:{S}_{{n}} =\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{e}^{{rx}} \:. \\ $$

Commented by 112358 last updated on 13/Aug/15

I see. Good alternative approach.  How may one show that   lim_(x→0) ((e^x −1)/x)=1 ?

$${I}\:{see}.\:{Good}\:{alternative}\:{approach}. \\ $$$${How}\:{may}\:{one}\:{show}\:{that}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{x}} −\mathrm{1}}{{x}}=\mathrm{1}\:? \\ $$

Commented by 123456 last updated on 14/Aug/15

F(a)=lim_(x→0) ((a^x −1)/x),a>0,a≠1  x=log_a (t+1)  x→0≡t→0  F(a)=lim_(t→0) ((a^(log_a (t+1)) −1)/(log_a (t+1)))  F(a)=lim_(t→0) (t/(log_a (t+1)))  [log_a (t+1)=((ln (t+1))/(ln a))]  F(a)=lim_(t→0) ((tln a)/(ln (t+1)))=lim_(t→0) ((ln a)/((1/t)ln(1+t)))  F(a)=((ln a)/(lim_(t→0)  ln(1+t)^(1/t)  ))=((ln a)/(ln lim_(t→0) (1+t)^(1/t) ))  fundamental limit:lim_(t→0) (1+t)^(1/t) =e  F(a)=((ln a)/(ln e))=ln a  a=e  F(e)=1

$$\mathrm{F}\left({a}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{a}^{{x}} −\mathrm{1}}{{x}},{a}>\mathrm{0},{a}\neq\mathrm{1} \\ $$$${x}=\mathrm{log}_{{a}} \left({t}+\mathrm{1}\right) \\ $$$${x}\rightarrow\mathrm{0}\equiv{t}\rightarrow\mathrm{0} \\ $$$$\mathrm{F}\left({a}\right)=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{a}^{\mathrm{log}_{{a}} \left({t}+\mathrm{1}\right)} −\mathrm{1}}{\mathrm{log}_{{a}} \left({t}+\mathrm{1}\right)} \\ $$$$\mathrm{F}\left({a}\right)=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{t}}{\mathrm{log}_{{a}} \left({t}+\mathrm{1}\right)}\:\:\left[\mathrm{log}_{{a}} \left({t}+\mathrm{1}\right)=\frac{\mathrm{ln}\:\left({t}+\mathrm{1}\right)}{\mathrm{ln}\:{a}}\right] \\ $$$$\mathrm{F}\left({a}\right)=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{t}\mathrm{ln}\:{a}}{\mathrm{ln}\:\left({t}+\mathrm{1}\right)}=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{ln}\:{a}}{\frac{\mathrm{1}}{{t}}\mathrm{ln}\left(\mathrm{1}+{t}\right)} \\ $$$$\mathrm{F}\left({a}\right)=\frac{\mathrm{ln}\:{a}}{\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{ln}\left(\mathrm{1}+{t}\right)^{\mathrm{1}/{t}} \:}=\frac{\mathrm{ln}\:{a}}{\mathrm{ln}\:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+{t}\right)^{\mathrm{1}/{t}} } \\ $$$$\mathrm{fundamental}\:\mathrm{limit}:\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+{t}\right)^{\mathrm{1}/{t}} ={e} \\ $$$$\mathrm{F}\left({a}\right)=\frac{\mathrm{ln}\:{a}}{\mathrm{ln}\:{e}}=\mathrm{ln}\:{a} \\ $$$${a}={e} \\ $$$$\mathrm{F}\left({e}\right)=\mathrm{1} \\ $$

Commented by 112358 last updated on 14/Aug/15

Awesome. Thanks for sharing   that proof.

$${Awesome}.\:{Thanks}\:{for}\:{sharing}\: \\ $$$${that}\:{proof}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com