Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145314 by loveineq last updated on 04/Jul/21

Let a,b ≥ 0 and (a+1)(b+1) = (a+b)^2  . Prove that         (a+b)(√((a+1)^3 +(b+1)^3 )) ≤ (a+1)^2 +(b+1)^2  ≤ (1/2)[(a+1)^3 +(b+1)^3 ]

Leta,b0and(a+1)(b+1)=(a+b)2.Provethat(a+b)(a+1)3+(b+1)3(a+1)2+(b+1)212[(a+1)3+(b+1)3]

Commented by justtry last updated on 05/Jul/21

(a+b)(b+1)=(a+b)^2   ⇔ab+a+b+1=a^2 +2b+b^2   ⇔1+(a+b)=a^2 +2b+b^2   b=0⇒(1+a)=a^2   a=0⇒(1+b)=b^2   & (1+a)^3 ≥(1+a)^2 =(a^2 )^2         (1+b)^3 ≥(1+b)^2 =(b^2 )^2   (1/2)[(1+a)^3 +(1+b)^3 ]≥(1/2)[(a^2 )^2 +(b^2 )^2 ]≥(((a^2 +b^2 )^2 )/4)  ⇔(1/2)[(1+a)^3 +(1+b)^3 ]≥((a^2 )^2 +(b^2 )^2 )≥(((a^2 +b^2 )^2 )/2)  ⇔ (1/2)[(1+a)^3 +(1+b)^3 ]≥(1/2)(a^4 +b^4 +2a^2 b^2 )=(1/2)[(1+a)^2 +(1+b)^2 +2(a+b)^2 ]  note  (1/2)[(1+a)^2 +(1+b)^2 +2(a+b)^2 ]≥(1+a)^2 +(1+b)^2  →a=b=1 or a≠b≠1, a,b≥0  so  (1/2)[(1+a)^3 +(1+b)^3 ]≥(1+a)^2 +(1+b))^2   ⇔ (1+a)^2 +(1+b)^2 ≤(1/2)[(1+a)^3 +(1+b)^3 ]  .........

(a+b)(b+1)=(a+b)2ab+a+b+1=a2+2b+b21+(a+b)=a2+2b+b2b=0(1+a)=a2a=0(1+b)=b2&(1+a)3(1+a)2=(a2)2(1+b)3(1+b)2=(b2)212[(1+a)3+(1+b)3]12[(a2)2+(b2)2](a2+b2)2412[(1+a)3+(1+b)3]((a2)2+(b2)2)(a2+b2)2212[(1+a)3+(1+b)3]12(a4+b4+2a2b2)=12[(1+a)2+(1+b)2+2(a+b)2]note12[(1+a)2+(1+b)2+2(a+b)2](1+a)2+(1+b)2a=b=1orab1,a,b0so12[(1+a)3+(1+b)3](1+a)2+(1+b))2(1+a)2+(1+b)212[(1+a)3+(1+b)3].........

Commented by loveineq last updated on 05/Jul/21

  why 1+a+b=a^2 +2b+b^2 ?

why1+a+b=a2+2b+b2?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com