Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 145318 by ZiYangLee last updated on 04/Jul/21

Let f:[0,1]→R be a differentiable function  such that f(f(x))=x for all x∈[0,1] and  f(0)=1.  If n is a positive integer, evaluate the  following integral:                            ∫_0 ^( 1) (x−f(x))^(2n)  dx

Letf:[0,1]Rbeadifferentiablefunctionsuchthatf(f(x))=xforallx[0,1]andf(0)=1.Ifnisapositiveinteger,evaluatethefollowingintegral:01(xf(x))2ndx

Answered by mindispower last updated on 04/Jul/21

fdifferntiabl⇒f continus  f(0)=1,f(f(0))=0⇒f(1)=0  ⇒[0,1]⊂f[0,1]  f∣[0,1]→[0,1] is bijective   ∫_0 ^1 (x−f(x))^(2n) dx,x=f(t)  ∫_1 ^0 (f(t)−t)^(2n) f′(t)dt  =−∫_0 ^1 ((f(t)−t))^(2n) f′(t)dt  2∫_0 ^1 (x−f(x))^(2n) dx=∫_0 ^1 (x−f(x))^(2n) dx−∫_0 ^1 (x−f(x))^(2n) f′(x)dx  =∫_0 ^1 (x−f(x))^(2n) (1−f′(x))dx  =[(1/(2n+1))(x−f(x))^(2n+1) ]_0 ^1 =(1/(2n+1))((1−f(1))^(2n+1) +f(0)^(2n+2) )  =(2/(2n+1))⇒∫_0 ^1 (x−f(x))^(2n) dx=(1/(2n+1))  exemple of such function  x→1−x  ∫_0 ^1 (x−f(x))^(2n) dx=∫_0 ^1 (2x−1)^(2n) =(1/(2(2n+1)))[2x−1]_0 ^1 =(1/(2n+1))

fdifferntiablfcontinusf(0)=1,f(f(0))=0f(1)=0[0,1]f[0,1]f[0,1][0,1]isbijective01(xf(x))2ndx,x=f(t)10(f(t)t)2nf(t)dt=01((f(t)t))2nf(t)dt201(xf(x))2ndx=01(xf(x))2ndx01(xf(x))2nf(x)dx=01(xf(x))2n(1f(x))dx=[12n+1(xf(x))2n+1]01=12n+1((1f(1))2n+1+f(0)2n+2)=22n+101(xf(x))2ndx=12n+1exempleofsuchfunctionx1x01(xf(x))2ndx=01(2x1)2n=12(2n+1)[2x1]01=12n+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com