All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 145318 by ZiYangLee last updated on 04/Jul/21
Letf:[0,1]→Rbeadifferentiablefunctionsuchthatf(f(x))=xforallx∈[0,1]andf(0)=1.Ifnisapositiveinteger,evaluatethefollowingintegral:∫01(x−f(x))2ndx
Answered by mindispower last updated on 04/Jul/21
fdifferntiabl⇒fcontinusf(0)=1,f(f(0))=0⇒f(1)=0⇒[0,1]⊂f[0,1]f∣[0,1]→[0,1]isbijective∫01(x−f(x))2ndx,x=f(t)∫10(f(t)−t)2nf′(t)dt=−∫01((f(t)−t))2nf′(t)dt2∫01(x−f(x))2ndx=∫01(x−f(x))2ndx−∫01(x−f(x))2nf′(x)dx=∫01(x−f(x))2n(1−f′(x))dx=[12n+1(x−f(x))2n+1]01=12n+1((1−f(1))2n+1+f(0)2n+2)=22n+1⇒∫01(x−f(x))2ndx=12n+1exempleofsuchfunctionx→1−x∫01(x−f(x))2ndx=∫01(2x−1)2n=12(2n+1)[2x−1]01=12n+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com