Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 14535 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Jun/17

hello dears.  this is an ancient system of equiations  that have not solved by any one yet.  but i think by studing several ways  that used for solveing Q.14157,now   we can attack this.  note:it is a first time in world that  quistions such that Q.14157,solved.  Congraglotion to evry  one in this forum!  by puting: (p=x^2 ,q=y^2 ) we can write  that system as below:   { ((x^2 +y=a^2 )),((x+y^2 =b^2 )) :}    (A)  i have an idea for solving system(A).  but at first i have one numeric case:   { ((p+(√q)=5)),(((√p)+q=3)) :}  p−4+(√q)=1⇒((√p)−2)((√p)+2)+(√q)−1=0  ((√p)−2)+((√q)−1)((√q)+1)=0⇒  ((√p)−2)=−((√q)−1)((√q)+1)⇒  −((√q)−1)((√q)+1)((√p)+2)+(√q)−1=0  ((√q)−1)(−((√q)+1)((√p)+2)+1)=0  ⇒(√q)−1=0⇒(q=1⇒p=4)  but we can not use this numeric way  for parameters: a^2  ,b^2 .  geometric ways can useful for this.  by writing system as (A),and adding  equations ,we have:  x^2 +x+y^2 +y=a^2 +b^2 ⇒  ⇒(x+(1/2))^2 +(y+(1/2))^2 =a^2 +b^2 +(1/2).  i.e :answers of system are located on  the premeter of a circle whit center  point: M(((−1)/2),((−1)/2)) and radius of:R=(√(a^2 +b^2 +(1/2).))  i have a drawing in commenet below.  and i want members of this forum  continue my way to geting answers,  or another ideas that you have.  excuse me for long commenet.

hellodears.thisisanancientsystemofequiationsthathavenotsolvedbyanyoneyet.butithinkbystudingseveralwaysthatusedforsolveingQ.14157,nowwecanattackthis.note:itisafirsttimeinworldthatquistionssuchthatQ.14157,solved.Congraglotiontoevryoneinthisforum!byputing:(p=x2,q=y2)wecanwritethatsystemasbelow:{x2+y=a2x+y2=b2(A)ihaveanideaforsolvingsystem(A).butatfirstihaveonenumericcase:{p+q=5p+q=3p4+q=1(p2)(p+2)+q1=0(p2)+(q1)(q+1)=0(p2)=(q1)(q+1)(q1)(q+1)(p+2)+q1=0(q1)((q+1)(p+2)+1)=0q1=0(q=1p=4)butwecannotusethisnumericwayforparameters:a2,b2.geometricwayscanusefulforthis.bywritingsystemas(A),andaddingequations,wehave:x2+x+y2+y=a2+b2(x+12)2+(y+12)2=a2+b2+12.i.e:answersofsystemarelocatedonthepremeterofacirclewhitcenterpoint:M(12,12)andradiusof:R=a2+b2+12.ihaveadrawingincommenetbelow.andiwantmembersofthisforumcontinuemywaytogetinganswers,oranotherideasthatyouhave.excusemeforlongcommenet.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 02/Jun/17

M(((−1)/2),((−1)/2)),G(0,y),H(x,0),MD=MB=R  you are right mrW1.corrected.thanks.  waiting for your solution..............

M(12,12),G(0,y),H(x,0),MD=MB=RyouarerightmrW1.corrected.thanks.waitingforyoursolution..............

Commented by ajfour last updated on 03/Jun/17

kindly let me know, how to find  x satisfying:        x^4 +x=a

kindlyletmeknow,howtofindxsatisfying:x4+x=a

Commented by mrW1 last updated on 02/Jun/17

you mean MD=MB=R, not oD=oB=R

youmeanMD=MB=R,notoD=oB=R

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17

it is not easy.if a is a number,numeric  methods,such that:trial and error,newton−raphson  drawing a graph,my be helpful.by  factrizing to: x(x+1)(x^2 −x+1)=a,and  this fact that :a should dividable by  x,x+1,x^2 −x+1,you can find answers.  x(x+1)(x^2 −x+1)=(x^2 +x)(x^2 −x+1)=  (x^2 +x)(x^2 +x−2x+1)=  ⇒(x^2 +x)^2 −(2x−1)(x^2 +x)−a=0  x^2 +x=((2x−1±(√((2x−1)^2 +4a)))/2)  2x^2 +2x=2x−1±(√((2x−1)^2 +4a))  ⇒(2x^2 +1)^2 =(2x−1)^2 +(2(√a))^2   now you have a right angle triangle  with sids of: 2x^2 +1,2x−1,2(√a).  my be have a geometric way......

itisnoteasy.ifaisanumber,numericmethods,suchthat:trialanderror,newtonraphsondrawingagraph,mybehelpful.byfactrizingto:x(x+1)(x2x+1)=a,andthisfactthat:ashoulddividablebyx,x+1,x2x+1,youcanfindanswers.x(x+1)(x2x+1)=(x2+x)(x2x+1)=(x2+x)(x2+x2x+1)=(x2+x)2(2x1)(x2+x)a=0x2+x=2x1±(2x1)2+4a22x2+2x=2x1±(2x1)2+4a(2x2+1)2=(2x1)2+(2a)2nowyouhavearightangletrianglewithsidsof:2x2+1,2x1,2a.mybehaveageometricway......

Answered by ajfour last updated on 03/Jun/17

   (√p)+(a^2 −p)^2 =b^2   , and     (√q)+(b^2 −q)^2  =a^2   .

p+(a2p)2=b2,andq+(b2q)2=a2.

Commented by ajfour last updated on 03/Jun/17

Commented by ajfour last updated on 03/Jun/17

whether (√p)=x and (√q)=y  we substitute or not difficulty  is the same, i think..

whetherp=xandq=ywesubstituteornotdifficultyisthesame,ithink..

Commented by ajfour last updated on 03/Jun/17

beyond this i barely can do  anything ...

beyondthisibarelycandoanything...

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17

by this substitution,diffculty of eq.  added much more.

bythissubstitution,diffcultyofeq.addedmuchmore.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17

very nice pic.mrAjfour!i think there  is a footage of  ′golden ratio′ that can be  explored.but i don′t know where and  how?

verynicepic.mrAjfour!ithinkthereisafootageofgoldenratiothatcanbeexplored.butidontknowwhereandhow?

Commented by ajfour last updated on 03/Jun/17

thanks, can you not let me know  a more definite  answer to this  question;  what  golden ratio,  i have heard not.

thanks,canyounotletmeknowamoredefiniteanswertothisquestion;whatgoldenratio,ihaveheardnot.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17

in a simple word,′golden ratio′ is the  positive root of equation:  ϕ(ϕ−1)=1  ϕ=((1+(√(1+4)))/2)=(((√5)+1)/2)#1.618  golden ratio is obtained when a  line AB is divided by 2 part   whit lengths of :a &b ,(a>b)such that  ratio of greater part to whole AB  is equal to ratio of smaller part to   greater part.i.e:(b/(a+b))=(a/b)  ⇒b^2 −ab−a^2 =0⇒b=((a+(√(5a^2 )))/2)=(((√5)+1)/2)a  or:  (b/a)=(((√5)+1)/2)  =1.618 .  golden ratio is used  in  very part of science and art.   in architecture,design and drawing  of human budy, etc.....  a rectangle that have golden ratio   between its sides,named as:  golden rectangle.......

inasimpleword,goldenratioisthepositiverootofequation:φ(φ1)=1You can't use 'macro parameter character #' in math modegoldenratioisobtainedwhenalineABisdividedby2partwhitlengthsof:a&b,(a>b)suchthatratioofgreaterparttowholeABisequaltoratioofsmallerparttogreaterpart.i.e:ba+b=abb2aba2=0b=a+5a22=5+12aor:ba=5+12=1.618.goldenratioisusedinverypartofscienceandart.inarchitecture,designanddrawingofhumanbudy,etc.....arectanglethathavegoldenratiobetweenitssides,namedas:goldenrectangle.......

Answered by mr W last updated on 05/Aug/19

let x=(√p), y=(√q)  let u=a^2 , v=b^2   x^2 +y=u  x+y^2 =v  x+(u−x^2 )^2 =v  ⇒x^4 −2ux^2 +x+u^2 −v=0  trying to use method from ajfour sir:  a=−2u  b=1  c=u^2 −v  ⇒x^2 −px+(1/2)(−2u+p^2 +(1/p))=0  ⇒x=(1/2)(p±(√(4u−p^2 −(2/p))))  where p^2 =P with  P^3 −4uP^2 +4vP−1=0  let P=Q+((4u)/3)  Q^3 +3(((4u)/3))Q^2 +3(((4u)/3))^2 Q+(((4u)/3))^3 −4u[Q^2 +2(((4u)/3))Q+(((4u)/3))^2 ]+4v(Q+((4u)/3))−1=0  Q^3 +4(v−((4u^2 )/3))Q+((16uv)/3)−1=0  Δ=[(4/3)(v−((4u^2 )/3))]^3 +[(1/2)(((16uv)/3)−1)]^2   Δ=((64)/(729))(3v−4u^2 )^3 +(1/(36))(16uv−3)^2 >0, say  Q=(((√Δ)−(1/6)(16uv−3)))^(1/3) −(((√Δ)+(1/6)(16uv−3)))^(1/3)   P=p^2 =((4u)/3)+(((√Δ)−(1/6)(16uv−3)))^(1/3) −(((√Δ)+(1/6)(16uv−3)))^(1/3)   ⇒p=±(√(((4u)/3)+(((√Δ)−(1/6)(16uv−3)))^(1/3) −(((√Δ)+(1/6)(16uv−3)))^(1/3) ))  ⇒x=(1/2){±(√(((4u)/3)+(((√Δ)−(1/6)(16uv−3)))^(1/3) −(((√Δ)+(1/6)(16uv−3)))^(1/3) ))±(√(((8u)/3)−(((√Δ)−(1/6)(16uv−3)))^(1/3) +(((√Δ)+(1/6)(16uv−3)))^(1/3) ∓(2/(√(((4u)/3)+(((√Δ)−(1/6)(16uv−3)))^(1/3) −(((√Δ)+(1/6)(16uv−3)))^(1/3) )))))}  ⇒p=(1/4){±(√(((4a^2 )/3)+(((√Δ)−(1/6)(16a^2 b^2 −3)))^(1/3) −(((√Δ)+(1/6)(16a^2 b^2 −3)))^(1/3) ))±(√(((8a^2 )/3)−(((√Δ)−(1/6)(16a^2 b^2 −3)))^(1/3) +(((√Δ)+(1/6)(16a^2 b^2 −3)))^(1/3) ∓(2/(√(((4a^2 )/3)+(((√Δ)−(1/6)(16a^2 b^2 −3)))^(1/3) −(((√Δ)+(1/6)(16a^2 b^2 −3)))^(1/3) )))))}^2   with Δ=((64)/(729))(3b^2 −4a^4 )^3 +(1/(36))(16a^2 b^2 −3)^2

letx=p,y=qletu=a2,v=b2x2+y=ux+y2=vx+(ux2)2=vx42ux2+x+u2v=0tryingtousemethodfromajfoursir:a=2ub=1c=u2vx2px+12(2u+p2+1p)=0x=12(p±4up22p)wherep2=PwithP34uP2+4vP1=0letP=Q+4u3Q3+3(4u3)Q2+3(4u3)2Q+(4u3)34u[Q2+2(4u3)Q+(4u3)2]+4v(Q+4u3)1=0Q3+4(v4u23)Q+16uv31=0Δ=[43(v4u23)]3+[12(16uv31)]2Δ=64729(3v4u2)3+136(16uv3)2>0,sayQ=Δ16(16uv3)3Δ+16(16uv3)3P=p2=4u3+Δ16(16uv3)3Δ+16(16uv3)3p=±4u3+Δ16(16uv3)3Δ+16(16uv3)3x=12{±4u3+Δ16(16uv3)3Δ+16(16uv3)3±8u3Δ16(16uv3)3+Δ+16(16uv3)324u3+Δ16(16uv3)3Δ+16(16uv3)3}p=14{±4a23+Δ16(16a2b23)3Δ+16(16a2b23)3±8a23Δ16(16a2b23)3+Δ+16(16a2b23)324a23+Δ16(16a2b23)3Δ+16(16a2b23)3}2withΔ=64729(3b24a4)3+136(16a2b23)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com