All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 145358 by qaz last updated on 04/Jul/21
Evaluate::∫01ln(1+x2)⋅arctan(x)dx=?
Answered by Olaf_Thorendsen last updated on 04/Jul/21
I=∫01ln(1+x2)arctan(x)dxI=[xln(1+x2)arctan(x)]01−∫01x(2x1+x2arctan(x)+ln(1+x2)1+x2)dxI=π4ln(2)−2∫01arctanxdx+2∫01arctanx1+x2dx+∫0112.2x1+x2.ln(1+x2)dxI=π4ln(2)−2[xarctanx−12ln(1+x2)]01+2[12arctan2x]01+14[ln2(1+x2)]01I=π4ln(2)−2(π4−12ln(2))+π216+14ln2(2)I=π216+π4(ln(2)−2)+14ln2(2)+ln(2)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com