Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 145399 by Willson last updated on 04/Jul/21

Prove that   lim_(n→+∞)   ∫^( n) _( 0)  (t^n /(n!)) e^(−t)  dt = (1/2)

Provethatlimn+0ntnn!etdt=12

Answered by ArielVyny last updated on 04/Jul/21

∫_0 ^n (t^n /(n!))e^(−t) dt=(1/(n!))∫_0 ^(+∞) e^(−t) t^n dt(1/(n!))Γ(n+1)=((n!)/(n!))=1

0ntnn!etdt=1n!0+ettndt1n!Γ(n+1)=n!n!=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com